(54) Title: SYSTEM AND METHOD FOR REMOTELY TRIGGERING ACTIONS ON A MOBILE DEVICE

(57) Abstract: A method of selecting data from a first electronic device for a second electronic device, the second electronic device comprising an authentication module and being arranged to receive messages over a communication bearer, and transfer a received message to the authentication module when determining from an indication in said received message that it is intended to said authentication module, the method comprising acts of receiving from the first electronic device the selected data, retrieving one or more commands associated to said selected data, generating using the selected data and associated command(s) a triggering message, said triggering message comprising an indication that it is intended to the authentication module of the second electronic device for triggering of said command(s) for said selected data, and sending the triggering message over the 15 communication bearer to the second electronic device, thereby causing the authentication module to trigger the command for the selected data.
Declarations under Rule 4.17:
— of inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))
SYSTEM AND METHOD FOR REMOTELY TRIGGERING ACTIONS
ON A MOBILE DEVICE

FIELD OF THE PRESENT SYSTEM:

This system and method relate to communication services. More specifically, it relates to a system and a method for remotely triggering actions or transfer data on a mobile device.

BACKGROUND OF THE PRESENT SYSTEM:

Nowadays, more and more people own or regularly use a plurality of heterogeneous computation or communication devices, such as mobile phones, Personal Computers (PC), laptops, tablets and Personal Digital Assistants (PDA). In addition, more and more people also own or regularly use a plurality of devices with similar features. For example, it is not unusual for an office worker to use two different personal computers (one at home and one in the office) or to have two different mobile phones (one for personal and one for professional use).

All the different devices used by a person do not generally have the same set of capabilities. In fact, as an example, only some of those devices may be capable of making/receiving phone calls. Furthermore, only some of those devices may be easily carried by the user, such as mobile phones or PDAs. Differently, other devices may be more difficult to transport around (such as laptops). Other may not be transported at all (such as personal computers). Moreover, there are certain types of tasks that, although they could be performed by most or all of the devices of a user, can be comfortably executed only with few of those. For instance, Internet browsing can be generally executed on a large range of devices. It is nonetheless far quicker and easier to do it on a PC with large screen and an ergonomic QWERTY keyboard, rather than on a touch-screen smartphone, with smaller screen and smaller keyboard.

Because of the different sets of capabilities of the various devices regularly used by a person, it could happen in many occasions that a user may need to perform tasks that require two or more devices to be completed. For instance, if a user is at home and wants to search for the phone number of a restaurant in order to make a reservation, it will search it on Internet preferably from its PC or laptop (which has large screen and ergonomic keyboard) and then dial it from its mobile phone.
Another case of an action requiring the use of multiple devices consists in a user looking at the map of a place it is about to go and saving it on its mobile for later retrieval when arriving on site.

The execution of such tasks is frequently a cause of poor user experience, as it generally requires superfluous user intervention. For example, if a user wants to dial a phone number found while browsing the Internet from its laptop or PC, it would generally need to manually type the number in the mobile before being able to dial it. Another example is represented by the case of a user desiring to bookmark on a mobile phone a webpage found while browsing on the Web on another device. In this case, the user would have to type the entire Uniform Resource Locator (URL) of that webpage on the target mobile device in order to bookmark it.

Another cause of poor user experience is caused by the difficulty of moving data across devices. For instance, if a user wants to copy an image or a music file from its PC to its mobile phone, it will have to connect the two devices via a cable or to establish a local wireless network connection, such as a Bluetooth connection and then to transfer the required data.

All the issues described above could be considerably mitigated if the network connectivity of those devices could be advantageously used to make possible to exchange data and to remotely trigger actions or command from one device to another without the need of establishing a point-to-point communication link between the devices.

A number of solutions are known to those skilled in the art to address the issues described above. A downfall of these solutions is the need for a mobile application to be installed on the mobile phone in order to:

- receive data originated by another device over a network communication channel,
- elaborate the information received,
- trigger actions as specified in the received message.

In fact, the need of having a specific mobile application installed on the target mobile device is a considerable limitation of all those solutions, for a number of different reasons. First of all, for large scale deployment, a service provider needs to implement a specific mobile client application for all the mobile operating systems that are intended to be targeted. For instance, if it is desired to target devices equipped with Android, iOS, Blackberry OS (operating system) and Symbian Platform,
four different client applications must be implemented. As a result, this would increase the time and cost of development, testing and maintenance of the solution.

Secondly, another limitation is the impossibility of targeting low end devices. In fact, such devices usually do not support the installation of applications after being shipped by the manufacturer.

Thirdly, the need for a user to manually discover and install the mobile application may be a cause of discomfort that could result in a reduced adoption of the service, especially among users with little familiarity with the usage of mobile devices.

Fourthly, since the application is linked to the mobile device, a user is required to discover and install it every time he uses a new device. This is another cause of user discomfort. In fact, in addition to the discomfort generated by the manual execution of application discovery and installation, if the user's new device is equipped with a different operating system from his previous device, the procedure for discovering and installing the application may be different. Furthermore, the user may be required to further configure the application on the new device in order to work correctly. All this considerably affects user experience as the user is required to carry out repetitive tasks that could be avoided.

There is still a need today for a solution that allows the transfer of data and a command linked to the data from one device to another. There is a further need for a solution that can work for various types of phones, including smartphones, regardless of their OS and low end devices that cannot support the download of a dedicated application.

SUMMARY OF THE PRESENT SYSTEM AND METHOD:

It is an object of the present system, processor and method to overcome disadvantages and/or make improvements in the prior art.

To that extent, the present method proposes a method to transfer data to an electronic device according to claim 1.

Thanks to the present method, a method is provided to seamlessly transfer data and a command or action related to that data to the authentication or identity module card of the recipient electronic device. There is no need for an additional plug-in or local application for the recipient electronic device as most electronic device, even low end devices, are equipped today with an
authentication module such as a SIM card. Such a solution can be deployed on a
large scale without much adaptation of existing devices as required with the
existing solutions. In other words, a cross platform or OS solution is proposed.

5 **BRIEF DESCRIPTION OF THE DRAWINGS:**

The present system and method are explained in further details, and by way
of example, with reference to the accompanying drawings wherein:

FIG. 1 shows an exemplary embodiment of the present system,

FIG. 2 shows an exemplary embodiment of an authentication module in

the present system,

FIG. 3 shows an exemplary flowchart for transferring data and a command
to an electronic device according to a first embodiment of the present method,

FIG. 4 shows an exemplary message according to another embodiment of
the present method,

FIGs. 5A-5D show exemplary flowcharts according to various embodiment
of the present method, and;

FIG. 6 shows another exemplary embodiment of the present system.

DESCRIPTION OF THE PRESENT SYSTEM:

In the following description, for purposes of explanation rather than
limitation, specific details are set forth such as architecture, interfaces,
techniques, etc., for illustration. However, it will be apparent to those of ordinary
skill in the art that other embodiments that depart from these details would still be
understood to be within the scope of the appended claims.

Moreover, for the purpose of clarity, detailed descriptions of well-known
devices, systems, and methods are omitted so as not to obscure the description
of the present system. Furthermore, routers, servers, nodes, base stations,
gateways or other entities in a telecommunication network are not detailed as
their implementation is beyond the scope of the present system and method.

For purposes of simplifying a description of the present system, the terms
"operatively coupled", "coupled", and formatives thereof as utilized herein refer to a
connection between devices and/or portions thereof that enables operation in
accordance with the present system. For example, an operative coupling may
include one or more of a wired connection and/or a wireless connection between
two or more electronic devices that enables a one and/or two-way communication path between the devices and/or portions thereof. In another example, an operative coupling may include a wired and/or wireless coupling to enable communication between a mediation server according to the present system and one or more electronic devices.

5 Unless specified otherwise, the exemplary embodiment here after will be described in its application to a mobile electronic device or mobile device in short operable to execute the command associated to the transferred data from a first electronic device like a desktop or laptop computer for instance.

10 The description of the present system reported below is described with specific reference to the terminology and the functional entities defined in 3rd Generation Partnership Project (3GPP) specifications. However, this is done purely for exemplificative purposes and it is not be intended to limit the scope of the invention, which is only determined by the appended claims. Those skilled in the art would recognize that the concepts described herein may be advantageously used in other non-3GPP-compliant mobile networks as well.

15 The present exemplary embodiment is in no way a limitation of the scope of the present method and system as the present teachings could be implemented for other electronic or telecommunication devices, such as PDAs (Personal Digital Assistants), pads (like the iPad™ from Apple), and the likes, provided they host an authentication or identity module card.

Some or all of the issues with the prior art and identified above could be addressed or at least mitigated by embodiments of the system hereby disclosed. In order to explain how this system may guarantee cross-platform interoperability among other results, this invention is described as follows.

25 FIG. 1 is an illustration of an exemplary embodiment of the present system. As explained above, the main objective of the present system and method is to enable:

- the triggering of actions or commands (such as phone call initiation, Unstructured Supplementary Service Data or USSD service initiation, open web links ...)

30 on an authentication module bearing mobile device 102, or target device, from a first electronic device 101, also referred to as the source device. The action is associated to data (such as files, phone number, web address, and contact information) that is selected by a user on the first electronic device 101,
- the transfer of the selected data, along with the command from said first electronic device 101 to said authentication module bearing mobile device 102. These features may be enabled thanks the use of:
- a mediation server 110 receiving the data to be transferred and one or more associated commands from the first electronic device 101. The mediation server then generates from the received data and associated action a new or triggering message to be sent to the second electronic device 102 but with an indication that it is intended to its authentication module card 105. The triggering message enables the triggering of the action for the selected data,
- an identity or authentication module card 105, which is an integrated Circuit Card (ICC) hosting an applet capable of issuing proactive commands to a mobile device in which it is inserted, according to the card application toolkit framework specific of the wireless technology used. For instance, in a 3rd Generation Partnership Project (3GPP) compliant mobile network, this applet could consist in a USIM (Universal Subscriber Identity Module) Application Toolkit (USAT) or in a SIM (Subscriber Identity Module) Application Toolkit (STK) applet. The identity module card 105, as described later in relation to FIG. 2, may host (U)SIM application providing authentication features, along with other applications or applets.

In the present system, the first electronic device 101, for instance a user device, such as a PC, a laptop or a tablet, may host a source application (not shown on FIG. 1) such as a software component displaying to its user actions to be executed on a target mobile device, i.e. the authentication module bearing mobile device 102. This application could be an application locally installed on a device, such as a native application or a browser plug-in, or it could also be a Web application remotely accessed through a Web browser.

This source application is operatively coupled to the mediation server 110, i.e. it has at least access to a network connection in order to exchange data with the mediation server 110 over an agreed protocol, such as Hypertext Transfer Protocol (HTTP). Such an application may allow to:
- optionally highlight interesting data in a data page displayed on the first electronic device 101,
- identify one or more categories that can be associated to the selected data,
- determine from the identified categories one or more actions associated to the selected data,
- optionally display the different commands to the user for selection of one or more desired commands. The user of the first electronic device 101 can trigger the display of the commands by clicking or right-clicking on a selected data of the user interface.

Such identification of categories and determination of actions may use for instance Natural Language Processing (NLP) and the identification of specific formats of data (like an address, a phone number ...). These techniques are known today for software like Microsoft Word™ or the Apple iPhone™ OS that allows the identification of data (by highlighting the data) and offering a list of actions (save, transfer, copy, download, add to address book or contact list ...). Skype also offers the preselection of phone numbers in a webpage, and the possibility of triggering different actions such as making a call, saving to address book ...

When the source application consists in an application running on the first electronic device 101 (i.e. local to the source device 101), the user interactions, such as the choice of one or more commands, will trigger the submission of a request to the mediation server 110. Such a request will comprise the selected data and the chosen one or more commands.

In an alternative embodiment of the present system, the source application may reside on another server (not shown in Fig. 1). This would be the case, for instance, of a corporate directory Web server that allows employees to browse the directory from their PC and to trigger a call to an employee listed in the directory by clicking on its name, and choosing a call command. In this case, the source application implementing the request submission to the mediation server 110 is running on this directory server. However, the request to the mediation server is also triggered by the user when choosing for instance an action associated to the selected data.

In the present system, the mediation server may be a network entity in a telecommunication network (not represented on Fig. 1) that enables the present method. The present method may be offered through a “click to authentication module” service (referred to as “click to SIM” service hereafter) hosted on the mediation server 110, service that the user of the target mobile device 102 can subscribe to.

To enable the “click to SIM” service, the mediation server 110 may be configured to:
- provide the source application referred here above to the first electronic
device 101 for the specific embodiment wherein said first electronic device is hosting
it,
- register the user’s devices such as the target mobile device 102, along with
the type of applet provided with its identity module card 105, as described here after,
- receive from the first electronic device 101 the selected data, and one or
more commands, sent by the source application mentioned before,
- determine the target mobile device and its corresponding applet, that will
interpret the triggering message,
- generate using the received data and command(s) a message targeted to
the mobile device 102 and in a format understandable by its applet running on its
authentication module 105,
- submit this message over a communication bearer, for instance either SMS or
data.

In addition, in the exemplary illustration wherein the command involves the
transfer of data physically stored on the source device 101 to the target mobile
device 102, this server may comprise storage capabilities (like storage 115 in FIG. 1)
to temporarily store such data submitted by the source application, in order to be
subsequently retrieved by the target mobile device 102. This aspect will be described
with more details here after along with other use cases.

It should be noticed that the mediation server 110, in order to encode the
desired instructions in messages that could be securely delivered to the target applet,
may require interfacing with external network entities whose functionalities are well
known to those skilled in the art and that are beyond the scope of this invention. For
instance, if SMS is selected as bearer, the mediation server may need to interface
with an SMS Centre (SMSC) to submit those messages. In addition, if such messages
are required to be encrypted, the mediation server may need to interact with an
Over-the-air (OTA) platform which has knowledge of all the target card profiles and
keying material to correctly encrypt SMS messages.

The target mobile device 102 corresponds to the mobile device in which is
inserted the identity module card 105 hosting the target applet mentioned above.
Upon determining from the indication that the triggering messages issued by the
mediation server 110 are intended for the authentication module card, the mobile
device 102 will pass on these messages to the authentication module card 105 after
reception. The mobile device actually just acts as a forwarding entity that looks for
the indication in the messages received by the mediation server and forwards them
to the authentication module provided said mobile device finds this indication. The
indication, as explained later on, may be added in the headers of the message
generated by the mediation server.

This mobile device 102 can nevertheless be seen as the ultimate target of the
commands and data originally issued by the source application. Indeed, once the
applet interprets and executes the commands, it will request the target device 102
to carry out the commands in relation to the data (e.g. make a call, download a
map, store a new contact ...). In order to successfully execute the commands issued
by the card applet, this mobile device may support a shared toolkit interface (e.g.
USAT or STK) with the card.

The identity module and different other applications, running on the device
identity module, are illustrated in FIG. 2. The ICC of the target mobile device 102 is
illustrated in the form of a SIM or USIM card 200 comprising an OS 210 and an
application layer 220. A mobile interface 215 is provided to interface the different
applications with the mobile device 102.

A number applications, or software, 230 to 236 are available and running in the
application layer 220 of SIM card 200, including the SIM application itself 230. These
applications may be provided by the network operator prior to the mobile device
102 first operations or may be uploaded from the network using for instance Remote
Application Management (RAM) commands sent over SMS messages as defined in
ETSI TS 102.225 Remote APDU structure for UICC based applications.

A card applet, such as the purpose specific "Click to SIM" applet 234 or a
bytecode interpreter 236, may be provided to enable the interpretation of the
messages sent by the mediation server 110. Both types of applets, enabling the
present "Click to SIM service", are presented in FIG. 2 for illustration purposes. One of
them may only be needed for a given type of authentication module. More
specifically, the role of the card applet is to:

- receive messages generated by the mediation server using the command(s)
and data sent from the source application. The communication bearer as
mentioned before may be e.g. through SMS or a data connection as explained later,

- interpret and execute the instructions specified in the received messages. The
interpretation and execution may comprise the submission of one or more proactive
commands to the mobile device 102 in relation to the selected data. Optionally, the card applet 234 or 236 may report information on the status of execution of such commands to a remote network entity either using the same bearer over which the instructions have been received or using another bearer.

As explained above, the applet 243 or 236 is in charge of receiving messages from the mediation server and comprising commands for the selected data. It will further interpret the messages and execute the interpreted commands for the selected data. These functionalities can be implemented in a plurality of different ways. As a non-limiting example, the card applet could be an applet 234 implemented for this specific purpose, such as an STK or a USAT applet, receiving the messages over either an SMS message or over a data connection established between the applet and the mediation server. Such a purpose specific applet 234 may be downloaded to the SIM card over the air from the mediation server after registration of a user’s device.

Alternatively, these functionalities could be provided by any card bytecode interpreter or micro-browser applet which supports the “push” of commands through messages received from a remote network entity. For instance, this applet could be a SIM Alliance (S@T) browser, capable of executing instructions encoded in S@T bytecode, contained in either low-priority or high-priority push commands sent to the applet by a S@T server application. Alternatively, this applet could be a USAT interpreter, capable of executing instructions encoded in USAT bytecode, contained in operational push commands sent to the applet by a USAT application provider.

In any event, as explained later, the choice of applet type will determine the way the mediation server 110 encodes the messages generated from the selected data and commands.

FIG. 3 is an illustration of an exemplary embodiment of the present method that is carried out by the mediation server 110. In a preliminary or initiation act 300, the user may register one or more authentication module bearer devices 102 with the mediation server 110. The registration may be carried out through a web portal offering the “Click to SIM” service to users. For instance, the user may provide parameters related to his mobile devices 102 such as phone number or its unique MSISDN (Mobile Station International Subscriber Directory Number). More generally any unique identifier in the telecommunication network that enables the mediation
server 110 to send messages to the target mobile device 102 may be used for the registration.

For all the registered devices, in a further act 302, the mediation server 110 will determine the applet associated to the registered mobile device 102. The information may be collected directly from the operator's database provided it is available thereon. Alternatively, the mediation server 110 may send a message, like an SMS, enquiring the type of applets available on the newly registered target device 102. For a registered device, the mediation server 110 will store in an applet lookup database 115 (shown in FIG. 1) the type of applets identified in act 302. This indexing applet type/target device will enable the mediation server 110 to know prior to generating the triggering message which applet will interpret that message.

In an additional embodiment of the present method, provided the authentication module of the registered mobile 102 answers with no available applet to enable the present "Click to SIM" service, the mediation server 110 may send an SMS over the air as mentioned before and comprising the purpose specific applet 234 mentioned before.

In a further act 305, the source application may be updated with an identifier for each registered target device. This identifier may be the same as the one used to index the applet type in the applet lookup table 115. This update allows the source application to send the data and command(s) to the mediation server in association with a registered target device(s) 102 so that the mediation server can identify the target device. Furthermore, when more than one target devices are registered, the user can select one specific mobile device among all the registered ones.

The identifier may be for instance the phone number itself or a cookie or token assigned by the mediation server 110. Alternatively, the mediation server 110 may assign an identifier different than the one stored in the applet lookup database, the target mobile device 102 will then be retrieved by the mediation server 110 using this assigned identifier and the lookup database.

In an additional embodiment of the present device, a user identifier may be provided with the configuration of the source application in act 305. This user identifier may be generated by the mediation server 110 upon registration of the user to the "Click to SIM" service for instance and passed on to the source application. It may be used to retrieve information about a user if the "Click to SIM" service is offered to him through different levels of subscription. Additionally, when only one
target device has been registered by a user, his user identifier may be used in place of the
target device identifier for the mediation server 110 to identify that target
device.

In an additional embodiment, and prior to act 305, the source application may
be downloaded to the source device provided the "Click to SIM" service is enabled
using a source application local to the source device 101.

One may note that the registration of the target mobile devices, the
determination of the applet type and the configuration of the source application
may be carried out through one single operation for the user, for instance if the
source application is also configured to register the different authentication module
bearer devices from the user. This allows for instance an easy configuration of the
source application as the provision of the phone numbers for instance using the
source application will allow its immediate configuration without the need to have
the mediation server 110 send an identifier of each registered target device.

In a further act 310, the user will select data and one or more commands
associated to these selected data. This is enabled as mentioned before thanks to the
source application. A user may for instance right click on a user interface showing
various information like phone numbers, addresses, web links ... The right click will
cause the source application to analyze the selected data and offer a number of
commands that can be associated to the selected data, like store to contact list,
display on phone, make a call, display in a map application ...

The command may correspond to the proactive commands as defined in ETSI
TS 102 223: Smart cards: Card Application Toolkit (CAT) wherein proactive UICC
(Universal Integrated Circuit Card) commands are disclosed. Examples of proactive
commands will be listed hereafter.

In the present system, the target mobile device comprises, i.e. is associated to,
an authentication module, itself supporting a number of predefined commands, or
proactive commands. The commands/actions presented to the user through the
source application will correspond to these proactive commands. In other words, the
commands retrieved for the selected data are mapped onto the commands
defined for, i.e. handled or supported by, the authentication module.

The source application may for instance retrieve the category the selected
data pertains to, and list a number of these proactive commands that could handle
such a data category.
As mentioned before, some data may be preselected for the user, like highlighted in a different color so as to signal to the user that such data can be of interest to him.

The user interactions, once he has made his mind about which data and which actions to send, will cause the source application to send in a further act 312 the selected data and the chosen one or more commands to the mediation server 110.

One may note that the command is illustrated as being received from the source application. In an alternative embodiment, the command may be retrieved by the mediation server from default settings, e.g. when the commands are specific to an application like the corporate directory Web server mentioned before. Indeed in this specific example, the commands may be a call or sending an email depending on which data is selected by the user.

In order to allow identification of the target mobile device(s) by the mediation server 110, the source application will insert in the information sent to the mediation server 110 an identifier for the target mobile device 102, as known from the configuration act 305 (target device identifier or user identifier).

Once the mediation server 110 has received the selected data, retrieved the identifier (user and/or target device) and command(s) from act 312, it will in a further act 315 determine the applet type available in the authentication module of the target device. To do so, the mediation server will retrieve from the applet lookup database 115 the applet type indexed with the identifier.

In a subsequent act 320, the mediation server 110 will generate from the selected data and command(s) a triggering message, its format being based on the applet type. It will insert in this new message an indication that it is intended to the identity module card 105 of the target mobile device 102. That indication is essential to the recipient mobile device 102 to determine the recipient of a received message.

The generation of the new message, as well as the choice of the indication, are dependant upon the applet that will process, i.e. interpret, the message, and choice of communication bearer. The mediation server thus converts the messages generated by the source application into messages supported, i.e. understandable, by the authentication module of the target device. For instance, the selected data and commands may be encoded in S@T bytecode on top of some 3GPP-defined headers so as to be understood by the target applet SIM Alliance (S@T) browser using the example mentioned here before. As the mediation server knows the
"language" of both the source application and the target SIM, it can easily translate commands generated by the source application in commands understandable by the target authentication module. The examples hereafter will illustrate the different mapping handled by the authentication server.

5
Case of a SMS type of message:

In the case of the SMS message, the target mobile device may be identified and targeted using its MSISDN.

As mentioned before, the applet available on the identity module card 105 of the target mobile device 102 may be a purpose-specific card applet which communicates with the mediation server over a shared protocol. Such a card applet could be downloaded from the mediation server 110 after registration of a mobile device 102. With the example of a communication bearer using SMS, the commands and selected data could be submitted from the mobile device 110 to the applet, for example, inside one or more class 2 SMS messages.

An SMS class is defined in 3GPP TS 23.038 Technical Specification Group Core Network and Terminals; Alphabets and language-specific information (Release 9). (U)SIM Data download is a facility whereby the target mobile device must pass the short message in its entirety including all SMS elements contained in the SMS and deliver these elements to the (U)SIM. In order to allow such a download mechanism, the SMS message must be a class 2 message. This is set using the parameter TP-DCS (TP-Data-Coding-Scheme) as explained in 3GPP TS 23.040 Technical Specification Group Core Network and Terminals; Technical realization of the Short Message Service (SMS) (Release 9).

FIG. 4A is an exemplary embodiment of an SMS structure. The TP-DCS can be found in the SMS header 405 which is processed by the target mobile device 102.

As several applets can be found in the authentication module of the target mobile device 102 (see illustration of FIG. 2), each applet can be referenced by a pointer. The indication may be further specified by the mediation server 110 by adding this pointer in the triggering message so that the identity module card 105 can determine which applet will process the triggering message.

In the specific case of SMS messages used as a bearer, the enhanced SMS messages, as specified by 3GPP TS 23.048 Technical Specification Group Core Network and Terminals; Security mechanisms for the (U)SIM application toolkit,
defines the Target Application Reference (TAR) as the pointer which allows to assign
to a given target card applet a class 2 SMS. The enhanced SMS header 410 is
presented in FIG. 4A and comprises the TAR parameter that is processed by the
identity module 105 itself.

The TAR can be determined by the mediation server 110 upon discovery of the
applet type as illustrated in FIG. 3 in reference with act 302. The TAR can then be
saved in the applet lookup table 115, and indexed with each target mobile device
entry.

Consequently, in this specific embodiment using a SMS triggering message, the
indication that the new message is intended to the target device identity module
105 is the class TP-DCS, while the TAR, the pointer to the purpose specific applet, will
allow the determination of the target applet.

The command(s) along with the selected data may be encoded in the body
415 of the SMS, as seen in FIG. 4A.

Alternatively to the use of purpose specific or dedicated card applet (Click to
SIM applet 324), a bytecode interpreter 326 could be used. Many cards already
available in the market have a bytecode interpreter preinstalled. A bytecode
interpreter is simply a card applet, such as a USAT or an STK applet, capable of
executing commands called proactive and encoded in the format of a bytecode
that could be either:

- Physically located on the card 105,
- Pulled from an application server at runtime,
- Pushed from an application server at runtime.

Examples of bytecode interpreters include:

- USAT Interpreter specified by 3GPP TS 31.112, 31.113 and 31.114, which is
capable of executing USAT bytecode.
- S@T Browser, specified by the SIM Alliance, which is capable of executing S@T
bytecode.

Both bytecode interpreters mentioned above are capable of executing
bytecode remotely pushed from a server (like the mediation server 110)
encapsulated in an Enhanced SMS (ESMS) message encoded according to 3GPP TS
23.040 and TS 23.048. If the encoding for a bytecode interpreter applet may be
different than the encoding for the purpose specific applet, the indication in the
triggering message will use rely upon the TP-DCS and TAR parameters described before.

In order to enable the use of the bytecode interpreter, the mediation server may need to interact with external entities that can receive data and commands, appropriately encode them and securely send it to the bytecode interpreter of the target mobile device for execution. The details on how to push bytecode to a bytecode interpreter from a server is specified by the respective specification documents listed above.

Case of a data bearer:

In an alternative embodiment of the present method, instead of using a SMS bearer, a data connection could be used to transfer the triggering message from the mediation server 110 to the target applet, provided the target mobile device 102 supports it. FIG. 4B provides an exemplary flowchart of this alternative embodiment.

In this embodiment, the data connection could either be a persistent connection initiated by the card, for instance, at bootstrap (act 420) or a short-lived connection initiated by the card upon a specific triggering event, such as a specific SMS message received from the mediation server (alternative act 425).

Whether the target card applet triggers itself the data connection or upon receipt of a specific SMS message from the mediation server 110, the target card applet knows the IP address of the mediation server 110 through for instance the download the purpose specific card applet, or a specific SMS informing the target card applet of the mediation server address.

Whenever a data connection is set with the mediation server, the target mobile device is sharing a single IP address for all its different entities, including the different applets running on its identity module card 105. Card applets are then distinguished using a port number.

When initiating the data connection (act 430), the target mobile device 102 will inform the mediation server 110 of its IP (internet protocol) address, as well as the target applet port number. The IP address and port number (sent through act 435) may be then saved by the mediation server 110 in the applet lookup table 115 indexed with each target mobile device entry.

When the mediation server 110 sends a data message (instead of an SMS message as illustrated before) in a further act 440, the message will comprise the IP
address and port number for the recipient target applet enabling the present “Click to SIM” service. The port number can be seen as the indication to the target mobile device that the triggering message is intended to it identity module 105, and more specifically the target applet. Indeed the target mobile device 102 may not be aware that the specific port corresponds to the target applet hosted by its identity module 105. Nevertheless, the initiation from act 430 informs the mediation server 110 on how to reach the identity module and more specifically the target applet.

Going back to FIG. 3, whenever the triggering message has been generated by the mediation server 110, from the selected data and the command(s), it will be sent over the relevant communication bearer as explained with the illustration of a SMS or data bearer, in a further act 325.

One may note that the relevant communication bearer may be set by the service itself, at registration of the device, and optionally defined by the user as an option to the “Click to SIM” service.

The mobile device, upon reception of such messages, determines that the indication (TP-DCS or port) in the received message that it is intended to a specific element, i.e. its identity module 105 and can subsequently notify it to the card. In the case of a SMS message, it may be through the issuance of SM-PP DOWNLOAD ENVELOPE message, containing the body of the received message. If the target applet is registered with the Toolkit Registry to receive such events, they will be notified by the call of its process Toolkit method.

One may note that the present embodiments were described with the use of a physical ICC card as the identity module of the target mobile device. The present teachings are equally available for the new generation of soft identity module which are available in most recent mobile devices. Such soft SIM cards software implementation of physical hardware and can be addressed by the mediation server as a regular identity module card. Consequently the mediation server 110 encode the new message generated from the command(s) and selected data in the same way.

Use cases

In this section a number of use cases enabled by the present system and method are described. As illustrated here after in relation to Figs. 5A-5D, the user
may for example right click once the data has been selected, and a list of action is inferred by the source application.

Triggering mobile originated calls

This use case illustrated in FIG. 5A consists in a source application 505 issuing a command that triggers the target mobile device to initiate a phone call toward a specified phone number. An example of this use case could be represented by a Web runtime application (e.g. a Javascript application) embedded in a corporate directory Web application that automatically highlights phone numbers when displayed on a first electronic device 101, like a desktop computer. Such a source application 505 allows a user to initiate a mobile call by clicking on the specified phone number.

This use case may be executed as follows.

(i) Upon an automatic or user-generated event (such as clicking on a phone number as in the example above), the source application 505 sends a request to the mediation server 510 including at least the phone number to be called (the selected data) or alternatively, if the phone number is accessible by the mediation server 510, a reference to the network location of that phone number, e.g. a Uniform Resource Locator (URL) pointing to a resource including that phone number. One may note that the command “call” may be implicit here as the Web application is configured to make calls. The mediation server 510 will use retrieve a default command corresponding to the “call” command.

(ii) The mediation server 510, upon reception of the request, verifies its syntactic validity and determines the target mobile device 515 and corresponding applet 520 to which the command is addressed. Different methods could be used by the mediation server to determine the destination of the command, as described in relation to the configuration act 305 in FIG. 3. For instance, it could be explicitly declared by the source application in the request message or can be derived by the mediation server 510 from some authentication information appended to the message, such as an HTTP cookie or an authorization token, using the applet lookup database 115. Nevertheless, all these possible methods are well known to those skilled in the art and are beyond the scope of the present method and system. The mediation server 510 also determines the type of target card applet, also using database 115,
(iii) At this stage, the mediation server 510 generates the triggering message using the "call" command, the number to call, and an indication that the triggering message is intended to the identity module card (not shown in FIG. 5A) of the target mobile device 515. Depending on the type of target card applet available on the target mobile device (known from the applet lookup table 115), the indication will further be/comprise an indication that the triggering message is indeed intended for that applet 520.

(iv) The mediation server 510 then submits the triggering message to the target mobile device 515. The device 515 will read the indication (e.g. TP-DCS or port) and pass it on to the identity module. The message will then be processed by the target applet 520 (as indicated by the TAR or port). After interpreting the triggering message and retrieving the "call" command, the target applet 520 issues a SET UP CALL proactive command to the mobile device, containing, as value of the "Address" TLV object, the phone number provided by the source application, encoded as specified by ETSI TS 102.223. The command could also include instructions to issue additional proactive commands. For instance, the command may instruct the applet to issue a GET INPUT command first, giving the possibility to the user to edit the phone number that will be later called.

Pushing Web resources to the mobile browser

This use case consists in a source application 505 issuing a command that triggers the target mobile device to launch the Web browser to open a specified URL. An example of this use case illustrated in FIG. 5B consists in a Web browser plug-in that allows to right-click on a Web link (the selected data) and open it on the mobile browser, so that it can be added to a target mobile phone bookmarks. It should be noticed that this use case is not only limited to triggering the opening of web pages on a mobile phone, but it can be used to open any kind of Web resources accessible from the Internet though a URL, such as images, videos, application installers and so on.

This use case is executed as follows.

(i) Upon an automatic or user-generated event (such as right-clicking on a web link as in the example above), the source application 505 sends a request to the mediation server 510 including at least the Uniform Resource Locator (URL) pointing
to a resource that it is desired to be accessed from the target mobile device 515. The command may be for instance an "open the Web link" command or an "add to bookmark" command. As mentioned before, the command(s) may be selected by the user from the list of commands popping up on the first electronic device interface,

(ii) The mediation server, upon reception of the request, verifies its syntactic validity and determines the target mobile device 515 to which the command is addressed, as explained above. As in the previous (ii) act of FIG. 5A, the target card applet type is also retrieved from the applet lookup table 115.

(iii) At this stage, the mediation server generates a triggering message with the indication (TP-DCS or port for instance) that it is intended to the identity module of the mobile device 515. More specifically depending on the card applet, the indication will further be an indication (e.g. TAR or port) that the triggering message is indeed intended for the target applet 520. The triggering message will be generated using the command (open the Web link or add to bookmark) and the URL,

(iv) The mediation server then submits the triggering message to the target mobile device (not shown in FIG. 5B) and more specifically its card applet 520. After interpreting the triggering message and retrieving the command (say e.g. an open the Web link command), the target applet 520 issues a LAUNCH BROWSER proactive command, containing, as value of the "URL" TLV object, the URL provided by the source application, appropriately encoded. The command could also include instructions to execute additional tasks. For instance, the command may instruct the applet verify if the mobile device is currently roaming to a Visited Public Land Mobile Network (VPLMN) and ask user confirmation before launching the browser.

(v) At the reception of the proactive command, the mobile OS launches the default mobile browser. The mobile browser, after being launched, issues an HTTP GET request to download the resource originally specified by source application.

Transfer of files between devices

This use case is illustrated in FIG. 5C and consists in a source application pushing a data file locally stored on the first electronic device or source device on which is running to the source application 505. In the use cases illustrated before, in relation to FIGs. 5A and 5B, the selected data is pushed to the target mobile device and the target card applet 520. Such embodiments may not be convenient in case of a

20
large volume of data. This third use case illustrates an alternative embodiment of the present method, wherein the large transfer is allowed.

This use case is executed as follows.

(i) Upon an automatic or user-generated event, the source application 505 uploads to the mediation server 510 the data file identified by the user as destined to the target mobile device, for example through an HTTP POST method call. This may for instance be available to the user upon right clicking on a given file to be transferred, and a command such as “transfer file to XX mobile device” among other known commands available from such known OS as Windows Vista™ or Windows 7™.

(ii) The mediation server 510, upon reception of the given data file (the selected data), stores it and generate an URL pointing to this file. This URL may only be accessible to the target device for security reasons, so it may be interesting to make the URL ephemeral and hard to guess from potential hackers. For instance it could be generated to include a very long random string.

(iii) After having generated the temporary URL for the file, the mediation server 510 generates a triggering message with the indication that it is intended to the identity module of the mobile device 515. More specifically depending on the card applet, the indication will further be an indication that the triggering message is indeed intended for that applet 520 hosted by the identity module. The generation of the triggering message, though not inserting the full data file in the message, is nonetheless using the selected data as actually it is a URL to that data file which is added to the triggering message, along with an “open a Web link” command,

(iv) The mediation server 510 then submits the triggering message to the target mobile device 515 and more specifically its identity module card (not shown in FIG. 5C). The message will then be processed by the target applet 520 (as indicated by the TAR or port). That card applet 520 then interprets the triggering message and retrieves the command and URL. This command, similarly to the use case of opening Web links, instructs the card applet to issue a LAUNCH BROWSER proactive command to the mobile device. In this case, the value of the “URL” TLV object is the URL generated by the mediation server 510 pointing to the data file uploaded by the source application 505.

(v) As a result of this proactive command, the mobile OS launches the default mobile browser. The mobile browser, after being launched, issues an HTTP GET request to download from the mediation server 510 the file uploaded by the source
application. If the format of the file is supported by the browser, the browser opens the file. In the negative, it may prompt the user with a message asking where to download the file or automatically downloads it to a predefined location.

(vi) Upon successful download of said file from the mobile device, the mediation server may immediately delete the file to prevent it from being downloaded by unauthorized users. Alternatively, it could be deleted after a short period or persistently stored.

Transfer of contact information

This fourth use case, illustrated in Fig. 5D, consists in a source application 505 sending contact information (such as a vCard) to the target mobile device. An example of this use case consists in a mail reader plug-in application allowing a user to send contact information from its mail reader address book to its mobile device.

This use case is executed as follows.

(i) Upon an automatic or user-generated event, the source application 505 uploads the contact information to the mediation server 510. This contact information could be expressed in the format of a vCard or of any other data structure suitable to represent contact details which is reciprocally understood by the source application and the mediation server. The command provided by the user may be a "transfer the vCard" command, or "save to the contact book" command. Alternatively, that same command may be implicit to the mail reader plug-in application. In this case, the mediation server may retrieve the command from a default command setting, instead of receiving it from the source application 505.

(ii) The mediation server, upon reception of the selected data (the contact information), extracts the contact information and generates a vCard data structure including all the details uploaded by the source application and generate an ephemeral URL pointing to such vCard.

(iii) After having generated the temporarily URL for the vCard, the mediation server generates a triggering message to be sent to the target mobile device and more specifically the target applet. The triggering message is generated from the selected data and the initial command selected by the user. Indeed the triggering message will comprise an URL point to the vCard and an "open a Web link" command. In this specific exemplary embodiment, the media server is configured to replace the "save to the contact list command" with the "open a Web link"
command as the download of the vCard will itself cause the saving as seen here after,

(iv) The mediation server 510 then submits the triggering message to the target mobile device 515 and more specifically its identity module (not shown in FIG. 5D). The message will then be processed by the target applet 520. That card applet then interprets the triggering message and retrieves the command and URL. This command, similarly to the use case of opening Web links, instructs the card applet to issue a proactive LAUNCH BROWSER proactive command to the mobile device. In this case, however, the value of the "URL" TLV object is the URL generated by the mediation server pointing to the said vCard.

(v) As a result of this proactive command, the mobile OS launches the default mobile browser. The mobile browser, after being launched, issues an HTTP GET request to download the vCard. Upon reception of the HTTP GET request, the browser replies with a 200 OK response appending the vCard and the header "Content-Type", with, as a value, an Internet media type identifying a vCard, such as "text/x-vcard", "text/directory;profile=vCard" or "text/directory".

(vi) The mobile browser is then able to identify the presence of a vCard in the HTTP response and may prompt the user to perform relevant actions, such as saving the contact to the mobile address book.

(vii) Similarly to the case above, upon successful download of the vCard from the mobile device, the mediation server may immediately delete the vCard to prevent being downloaded by unauthorized users. Alternatively, it could delete it after a short period or persistently store it.

The reference to the use of a vCard to deliver the contact information to the mobile device has been mentioned as an example only. Those skilled in the art would recognize that other formats could be used instead.

Thanks to the present system and method, as identity modules are available for most mobile devices, a user will not need to reinstall the target applet enabling the "Click to SIM" service. All he will need to do is simply insert his SIM in another mobile device to enjoy the same service he enjoyed with his previous device.

FIG. 6 shows a system 600 in accordance with an embodiment of the present system. The system 600 includes a mediation server 690 of a telecommunication network, and hosting a "Click to SIM" service according to the present system. Mediation server 690 has a processor 610 operationally coupled to a memory 620,
a rendering device 630, such as one or more of a display, speaker, etc., a user input device 670, such as a sensor panel, a keyboard, trackball and the likes, and a connection 640 operationally coupled to other entities and nodes of a telecommunication network. The connection 640 may be an operable connection between the mediation server 690 and another node, server or device that has similar elements as mediation server 690, such as the first electronic device or source device hosting for instance the source application, or the second electronic device or target mobile device hosting the authentication module and its target card applet.

The memory 620 may be any type of device for storing for instance the application data related to the operating system of the mediation server 690, as well as to application data in accordance with the present method. The application data are received by the processor 610 for configuring the processor 610 to perform operation acts in accordance with the present system. The operation acts include:

- identifying the first and second application platforms respectively from the first and second electronic devices,

- receiving first metadata describing the one or more first applications installed on the first electronic device,

- retrieving from the application database one or more second applications from the second application platform that are linked with the one or more first applications, using the received first metadata,

- providing to either one of the first and second electronic devices a list of applications from the second application platform, said list comprising the one or more retrieved second applications.

The user input 670 may include a sensor panel as well as a keyboard, mouse, trackball, touchpad or other devices, which may be stand alone or be a part of a system, such as part of a personal computer (e.g., desktop computer, laptop computer, etc.) personal digital assistant, mobile phone, converged device, or other rendering device for communicating with the processor 610 via any type of coupling, such as a wired or wireless coupling. The user input device 670 is operable for interacting with the processor 610 including interaction within a paradigm of a GUI and/or other elements of the present system, such as to enable entry of data by an operator.
Clearly the mediation server 690, the processor 610, memory 620, rendering
device 630 and/or user input device 670 may all or partly be portions of a
computer system or other device, and/or be embedded in one or more servers.

The system, device and method described herein address problems in prior
5 art systems. In accordance with an embodiment of the present system, the
mediation server may send to the second electronic device a triggering message
with an indication that it is intended to its authentication module.

The methods of the present system are particularly suited to be carried out
by a computer software program, such program containing modules
corresponding to one or more of the individual steps or acts described and/or
envisioned by the present system. Such program may of course be embodied in a
computer-readable medium, such as an integrated chip, a peripheral device or
memory, such as the memory 620 or other memory coupled to the processor 610.

The computer-readable medium and/or memory 620 may be any
10 recordable medium (e.g., RAM, ROM, removable memory, CD-ROM, hard drives,
DVD, floppy disks or memory cards) or may be a transmission medium utilizing one
or more of radio frequency (RF) coupling, Bluetooth coupling, infrared coupling,
etc. Any medium known or developed that can store and/or transmit information
suitable for use with a computer system may be used as the computer-readable
medium and/or memory 620.

Additional memories may also be used. These memories configure
20 processor 610 to implement the methods, operational acts, and functions disclosed
herein. The operation acts may include controlling the rendering device 630 to
render elements in a form of a GUI and/or controlling the rendering device 630 to
render other information in accordance with the present system.

Moreover, the term "memory" should be construed broadly enough to
25 encompass any information able to be read from or written to an address in the
addressable space accessed by a processor. With this definition, information on a
network is still within memory 620, for instance, because the processor 610 may
retrieve the information from the network for operation in accordance with the
30 present system. For example, a portion of the memory like the applet lookup
database 115 understood herein may reside on different nodes of the
telecommunication network.
The processor 610 is capable of performing operations in response to incoming user actions, and executing instructions stored in the memory 620. The processor 610 may be an application-specific or general-use integrated circuit(s). Further, the processor 610 may be a dedicated processor for performing in accordance with the present system or may be a general-purpose processor wherein only one of many functions operates for performing in accordance with the present system. The processor 610 may operate utilizing a program portion, multiple program segments, or may be a hardware device utilizing a dedicated or multi-purpose integrated circuit.

Finally, the above discussion is intended to be merely illustrative of the present system and should not be construed as limiting the appended claims to any particular embodiment or group of embodiments. Thus, while the present system has been described with reference to exemplary embodiments of a desktop computer as the first electronic device, it should also be appreciated that numerous modifications and alternative embodiments may be devised by those having ordinary skill in the art without departing from the broader and intended spirit and scope of the present system as set forth in the claims that follow.

Indeed the present teaching may be transposable to any electronic device capable of displaying a GUI (graphical user interface), with selectable data, such as a general purpose computer, a PDA, a pad ... Additionally, the present teachings were mostly illustrated with one command used to generate the triggering message. The present method could be readily applied to more commands applicable to the same selected data.

Further, while exemplary user interfaces are provided to facilitate an understanding of the present system, other user interfaces may be provided and/or elements of one user interface may be combined with another of the user interfaces in accordance with further embodiments of the present system.

The section headings included herein are intended to facilitate a review but are not intended to limit the scope of the present system. Accordingly, the specifications and drawings are to be regarded in an illustrative manner and are not intended to limit the scope of the appended claims.

In interpreting the appended claims, it should be understood that:

a) the words "comprising" or "including" do not exclude the presence of other elements or acts than those listed in a given claim;
b) the word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements;

c) any reference signs in the claims do not limit their scope;

d) several "means" may be represented by the same item or hardware or software implemented structure or function;

e) any of the disclosed elements may be comprised of hardware portions (e.g., including discrete and integrated electronic circuitry), software portions (e.g., computer programming), and any combination thereof;

f) hardware portions may be comprised of one or both of analogue and digital portions;

g) any of the disclosed devices or portions thereof may be combined together or separated into further portions unless specifically stated otherwise;

h) no specific sequence of acts or steps is intended to be required unless specifically indicated; and

i) the term "plurality of" an element includes two or more of the claimed element, and does not imply any particular range of number of elements; that is, a plurality of elements may be as few as two elements, and may include an immeasurable number of elements.
CLAIMS

1. A method of selecting data from a first electronic device (101) for a second electronic device (102), the second electronic device comprising an identity module card (105) and being arranged to receive messages over a communication bearer, and transfer a received message to the identity module card when determining from an indication in said received message that it is intended to said identity module card, the method comprising acts of:
 - retrieving data selected on the first electronic device,
 - retrieving one or more commands associated to said selected data;
 - generating using the selected data and associated command(s) a triggering message, said triggering message comprising an indication that it is intended to the identity module card of the second electronic device and enabling the triggering of said command(s) for said selected data,
 - sending the triggering message over the communication bearer to the second electronic device, thereby causing the identity module card to trigger the command for the selected data.

2. The method of claim 1, wherein the identity module card of the second electronic device comprises an applet (324, 326) for interpreting the triggering message, the indication in the triggering message further being an indication that it is intended to said applet.

3. The method of the previous claim 2, further comprising a preliminary act of receiving from the second electronic device the applet type available on the identity module card.

4. The method of the previous claim 3, wherein the act of generating is based on the applet type.

5. The method of one of the previous claims 2 and 3, wherein the communication bearer is a SMS bearer, the triggering message being a SMS, and the indication comprising a class parameter to define the SMS as a data download SMS.
6. The method of one of the previous claims 2 and 3, wherein the communication bearer is a data bearer, the indication comprising a port number for the applet.

7. The method of claim 1, wherein the selected data is a data file, and the command a download command, the act of generating comprising:
 - storing the data file,
 - inserting in the new message a link to the stored file and the download command.

8. A mediation server (110) for making data selected from a first electronic device (101) available to a second electronic device (102), the second electronic device comprising an identity module card (105) and being arranged to receive messages over a communication bearer, and transfer a received message to the identity module card when determining from an indication in said received message that it is intended to said identity module card, the mediation server being arranged to:
 - retrieving data selected on the first electronic device,
 - retrieving one or more commands associated to said selected data;
 - generating using the selected data and associated command(s) a triggering message, said triggering massage comprising an indication that it is intended to the identity module card of the second electronic device and enabling the triggering of said command(s) for said selected data,
 - sending the triggering message over the communication bearer to the second electronic device, thereby causing the identity module card to trigger the command for the selected data.

9. A telecommunication system comprising:
 - a first electronic device (101) available for selecting data,
 - a second electronic device (102) comprising an identity module card (105) and being arranged to receive messages over a communication bearer, and transfer a received message to the identity module card when determining from an indication in said received message that it is intended to said identity module card,
 - a mediation server (110) being arranged to:
 - retrieving data selected on the first electronic device,
 - retrieving one or more commands associated to said selected data;
- generating using the selected data and associated command(s) a
 triggering message, said triggering massage comprising an indication that
 it is intended to the identity module card of the second electronic device
 and enabling the triggering of said command(s) for said selected data,
- sending the triggering message over the communication bearer to the
 second electronic device, thereby causing the identity module card to
 trigger the command for the selected data.

10. A computer readable carrier including computer program instructions that cause
 a computer to implement a method of selecting data from a first electronic device
 for a second electronic device according to claim 1 to 7
Figure 2
300 \[\text{Registration of target mobile devices}\]

302 \[\text{Determination of the applet type}\]

305 \[\text{Configuration of source application}\]

310 \[\text{Selection of data and command(s)}\]

315 \[\text{Determine recipient applet type}\]

312 \[\text{Message to the mediation server}\]

320 \[\text{Generate message intended to applet using data and command}\]

325 \[\text{Send message}\]

330 \[\text{Message processing}\]

Figure 3
Figure 4A

- **405** HEADER
- **410** ISMS HEADER
- **415** DATA ENCODED FOR RECIPIENT APPLET

Figure 4B

- **420** BOOTMOBILE DEVICE
- **425** RECEIVE SMS FROM MEDIATION SERVER
- **430** SET DATA CONNECTION WITH MEDIATION SERVER
- **435** SEND IP ADDRESS AND PORT NUMBER OF APPLET
- **440** RECEIVE MESSAGE OVER DATA CONNECTION
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G06F9/46 H04L29/08 G06F9/54

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- **X** Special categories of cited documents:
 - "X" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "A" document member of the same patent family

Date of the actual completion of the international search

1 March 2012

Date of mailing of the international search report

14/03/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-3040,
Fax. (+31-70) 340-3016

Authorized officer

Noll, Joachim

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CHEN Y-F ET AL: "IMOBILE EE - AN ENTERPRISE MOBILE SERVICE PLATFORM", WIRELESS NETWORKS, ACM, 2 PENN PLAZA, SUITE 701 - NEW YORK USA, vol. 9, no. 4, 1 July 2003 (2003-07-01), pages 283-297, XP001186984, ISSN: 1022-0038, DOI: DOI:10.1023/A:1023687025164 the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2010127149 A1</td>
<td>04-11-2010</td>
<td>AU 2010242976 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2760327 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2430537 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2469936 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010279652 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010127149 A1</td>
</tr>
<tr>
<td>US 2010298011 A1</td>
<td>25-11-2010</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101068444 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102006037103 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1344779 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007257982 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007259657 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2614561 A1</td>
</tr>
</tbody>
</table>