(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
26 March 2020 (26.03.2020)

(10) International Publication Number

WO 2020/061168 Al

WIPO I PCT

(51) International Patent Classification:
Ho4L 12911 (2013.01) Ho041 25/52 (2006.01)
Ho4L 12/751 (2013.01)

(21) International Application Number:
PCT/US2019/051687

(22) International Filing Date:

18 September 2019 (18.09.2019)
(25) Filing Language: English
(26) Publication Language:

(30) Priority Data:
62/732,667 18 September 2018 (18.09.2018) US
62/767,328 14 November 2018 (14.11.2018) US

(71) Applicant: FASTLY, INC. [US/US]; P.O. Box 78266, San
Francisco, CA 74107 (US).

English

(72) Inventors: TAVEIRA, Joao, c/o Fastly, Inc., P.O. Box
78266, San Francisco, CA 94107 (US). BUYTENHEK,
Lennert; c/o Fastly, Inc., P.O. Box 78266, San Francisco,
CA 94107 (US). SAINO, Lorenzo, c/o Fastly, Inc., P.O.
Box 78266, San Francisco, CA 94107 (US). LANDA, Raul,
c/o Fastly, Inc., P.O. Box 78266, San Francisco, CA 94107
(US).

(74) Agent: ROCHE, Stephen, S. ct al.; Setter Roche LLP,
14694 Orchard Parkway, Building A, Suite 200, Westmin-
ster, CO 80023 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: FAST REROUTE FOR CONNECTIONS OVER OUTBOUND PATHS

1o
kY

i OUTBOUNDPATH 120

L

packetis}

POINTS

{ QUTBOUNDPATH I3

Fa)
¥

shnowlodemonts

W

110

{ sourve aidress/port | tapet aldressibort {protocol §

COURRCHONS

[+
17

FIGUREL

wo 2020/061168 A1 | NI 00V KO Y0 00 00 0

(57) Abstract: A server detects a failure of an outbound path based on at least a measure of forward progress made on a connection
between the server and an end point. In response to the failure, the server generates a hash value based at least on an identifying value
of the connection and a failure counter associated with the measure of forward progress made on the connection. The server then selects
a next outbound path for the packet flow based on at least the hash value generated in response to the failure. The server also sends
the packet flow over the next outbound path to the end point.

[Continued on next page]

WO 2020/061168 A1 |10} 00 000 000 T O

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

10

15

20

25

WO 2020/061168 PCT/US2019/051687

FAST REROUTE FOR
CONNECTIONS OVER OUTBOUND PATHS
RELATED APPLICATIONS
[0001] This application is related to, and claims the benefit of prior to, U.S. Provisional
Patent Application No. 62/732,667, entitled “Fast Reroute for Connections Over Outbound
Paths,” and filed on September 18, 2018, as well as to U.S. Provisional Patent Application
No. 62/767,328, also entitled “Fast Reroute for Connections Over Outbound Paths,” and filed

on November 14, 2018, both of which are hereby incorporated by reference in their entirety.

TECHNICAL FIELD
[0002] Aspects of the disclosure are related to the field of computing and
communication infrastructure technology and, more particularly, to managing packet flows

over networks.

BACKGROUND

[0003] Content delivery networks, edge cloud platforms, and other types of
infrastructure services send and receive huge volumes of data. The data is typically sent and
received between servers and end points over logical connections that are created and torn
down dynamically as needed to handle packet flows over the connections. The servers and
end points establish the connections with each other, typically in accordance with one or
more of a variety of protocols, such as the Transport Control Protocol (TCP).

[0004] The connections that are created to handle packet flows traverse outbound
paths from the servers to the end points and inbound paths from the end points to the servers.
TCP and other transport layer protocols like it provide for reliable connectivity over a given
path between a server and an end point. For example, TCP provides for data to be

retransmitted from one end to another in the event that an earlier attempt to send the data was

10

15

20

25

WO 2020/061168 PCT/US2019/051687

not acknowledged. However, such retransmissions may not be effective if the cause of a
failure is with the inbound or outbound path over which the data has been sent. That is, no
amount of retransmitting will be successful if the path between a server and an end point has
failed somewhere along the way.

[0005] The border gateway protocol (BGP) is a protocol designed to, among other
things, address the problem of path failures. BGP is used to exchange routing and
reachability information among routing systems on the Internet, thus allowing such systems
to react to a path failure by rerouting packet flows over other paths.

[0006] Unfortunately, BGP is error prone due to its reliance on timeouts to detect path
failures. Even when BGP detects a path failure, routers are known to continue to send traffic
to each other regardless. The end result is that, by the time a packet flow can be rerouted in
response to a path failure detected by BGP, a great deal of traffic may have been lost. Such
problems may be compounded by retransmission attempts that add traffic to the network,

even though an outbound path the traffic would traverse has been compromised.

OVERVIEW

[0007] Technology is disclosed herein for rerouting packet flows over outbound paths
in response to path failures detected at the connection layer. In an implementation, an edge
service detects a failure of an outbound path based on at least a measure of forward progress
made on a connection between the server and an end point. In response to the failure, the
edge service generates a hash value based at least on an identifying value of the connection
and a failure counter associated with the measure of forward progress made on the
connection. The edge service then selects a next outbound path for the packet flow based on
at least the hash value generated in response to the failure. The edge service also sends the

packet flow over the next outbound path to the end point.

10

15

20

25

WO 2020/061168 PCT/US2019/051687

[0008] This Overview is provided to introduce a selection of concepts in a simplified
form that are further described below in the Technical Disclosure. It may be understood that
this Overview is not intended to identify key features or essential features of the claimed

subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Many aspects of the disclosure may be better understood with reference to the
following drawings. The components in the drawings are not necessarily to scale, emphasis
instead being placed upon clearly illustrating the principles of the present disclosure.
Moreover, in the drawings, like reference numerals designate corresponding parts throughout
the several views. While several embodiments are described in connection with these
drawings, the disclosure is not limited to the embodiments disclosed herein. On the contrary,

the intent is to cover all alternatives, modifications, and equivalents.

[0010] Figure 1 illustrates an operational environment in an implementation.

[0011] Figure 2 illustrates a reroute process in an implementation.

[0012] Figures 3A-3C illustrate the operation of a hash function in an implementation.
[0013] Figures 4A-4B illustrate an operational scenario in an implementation.

[0014] Figure 5 illustrates an operational environment in an implementation.

[0015] Figure 6 illustrates a reroute process employed by a server in an implementation.
[0016] Figure 7 illustrates a reroute process employed by a router in an implementation.
[0017] Figures 8A-8C illustrate an operational scenario in an implementation.

[0018] Figure 9 illustrates a computing system suitable for implementing the various

operational environments, architectures, processes, scenarios, and sequences discussed below

with respect to the Figures.

10

15

20

25

WO 2020/061168 PCT/US2019/051687

DETAILED DESCRIPTION

[0019] Technology disclosed herein relates to solutions for rerouting packet flows
over paths outbound from infrastructure services such as content delivery networks, cloud
edge platforms, and other computing and communications environments.

[0020] In various implementations, a reroute process may be employed by any one or
more of the servers, routers, and other elements in an infrastructure service to monitor the
forward progress made on a connection from the infrastructure service to an end point. When
a path failure is detected, as determined by a measure of the forward progress, a hash value is
generated based on an identifying value of the connection and a failure counter associated
with the measure of forward progress. The hash value is then used to select a next outbound
path for the connection and the packet flow can be rerouted over the selected path
accordingly.

[0021] To produce the hash value, an input to a hash function is generated from the
identifying value and the failure counter. In some implementations, the identifying value is
one of a set of identifying values in a tuple associated with the connection such as, but not
limited to, a protocol identifier, a source Internet protocol (IP) address, a source port, a target
IP address, and a target port. The failure counter may be mixed with the tuple such as by
replacing one of the values with the failure counter, adding the failure counter to the tuple,
performing an exclusive-or operation on one or more of the values and the failure counter, or
the like.

[0022] In some cases, the failure counter itself may be encoded in a firewall marker
property of a socket on the connection being rerouted. This may be accomplished by, for
example, encoding the failure counter in the four upper bits of a firewall marker (fwmark).

The value of the firewall marker may be used in some implementations to determine which

10

15

20

25

WO 2020/061168 PCT/US2019/051687

routing table to use when selecting a route. A zero-value firewall marker may correspond to
one routing table, for instance, while a non-zero value may correspond to a different routing
table, thereby influencing the selection of the new outbound path.

[0023] In some implementations, detecting the failure of the outbound path occurs
when the measure of forward progress made on the connection indicates an absence of any
forward progress for an amount of time. This may be accomplished by, for example,
monitoring for acknowledgments on the connection from the end point. An absence of
forward progress may be declared when no acknowledgments are received for an amount of
time, after which the failure counter may be incremented.

[0024] The outbound path from the infrastructure service to the end point may traverse
two or more networks. The detected failure may thus be caused by one or more of the
networks along the outbound path. The next outbound path may traverse at least one network
not traversed by the outbound path, allowing the packet flow to avoid the detected failure.
[0025] In some implementations, an outbound path may have failed before a
connection between an end point and a server can even be established. In such instances, fast
rerouting may be invoked when a certain number of attempts to establish a connection have
occurred. For instance, a request to establish a connection may be received in a server from
an end point, in response to which the server sends a reply message. However, the reply
message may not reach the end point if the outbound path is blocked. The server may thus
trigger a reroute after a certain number of attempts to communicate the reply message.

[0026] A technical effect may thus be appreciated that packet flows may be quickly
rerouted from one outbound path to another, thereby mitigating some of the drawbacks of
relying upon BGP such as lost packets, excessive retransmissions, and other errors. For
example, the speed with which a packet flow may be rerouted using the techniques described

herein may be greater than that which is typically accomplished when relying upon BGP.

10

15

20

25

WO 2020/061168 PCT/US2019/051687

Such speed may be made possible by monitoring the forward progress of a connection (e.g. a
transmission control protocol — or TCP — connection) and triggering a reroute to a new
outbound path in response to a detected failure as indicated by the measured forward
progress.

[0027] Another technical effect is the ability to distribute packet flows to one or more
other outbound routes so as not to overload any particular outbound route. This is
accomplished by incrementing the failure counter associated with a connection and mixing
the failure counter with the tuple that is used to produce a hash value. Since the hash value is
then used to pick a route, and since hash functions are deterministic, incrementing the failure
counter results in different hash values, even if the connection values remain the same. Thus,
since different hash values may correspond to different routes in the routing table(s),
incrementing the failure counter may result in the selection of different routes (or outbound
paths). Such a technique reduces the likelihood of rerouting the packet flows destined for a
particular end point to the same outbound path each time a reroute is triggered.

[0028] Referring now to the drawings, Figure 1 illustrates operational environment 100
in an implementation. End points 101 and edge service 105 establish logical connections
with each other, through which content may be requested and sent, of which connections 111,
112, 113, 114, 115, and 116 are representative. Edge service transmits the content over one
or more outbound paths to a given end point, of which outbound paths 121, 123, and 125 are
representative.

[0029] End points 101 are representative of the various computing devices from which
requests for content may originate and to which content may be served, such as consumer
devices, enterprise devices, and the like. Examples include, but are not limited to, laptop and
desktop computers, tablets, mobile phones, wearable devices, entertainment devices, gaming

devices, other server computers, Internet of Things (IoT) devices, or any other type of end

10

15

20

25

WO 2020/061168 PCT/US2019/051687

point device. End points 101 communicate with edge service 105 over one or more public or
private communication networks (e.g. the Internet), combination of networks, or variations
thereof.

[0030] Edge service 105 is representative of a content delivery network, an edge cloud
platform, or the like, and is comprised of various physical and/or virtual computing and
communication elements suitable for implementing a variety of associated infrastructure
services, of which computing system 901 in Figure 9 is representative. For example, edge
service 105 may include routers, servers, and other elements that function together to serve
content to end points 101. Edge service 105 may in some implementations obtain the content
from origin servers (not shown) and cache the content on its servers for faster serving to end
points. Examples of content that may be served to end points include text, images, video,
web pages, objects, applications, or any other type of data.

[0031] Connections 110 are representative of the transport layer connections that end
points 101 may make with edge service 105 to facilitate the exchange of data. Connections
110 may be established in accordance with a variety of communication protocols such as the
transmission control protocol (TCP), the stream control transmission protocol (SCTP), quick
user datagram Internet connections (QUIC), and other connection-oriented protocols.

[0032] Outbound paths 121, 123, and 125 are representative of the various paths traffic
may take in an outbound direction from edge service 105 to end points 101. Traffic sent from
end points 101 to edge service 105 may travel the same or different paths, but in the inbound
direction from the perspective of edge service 105. Outbound paths 121, 123, and 125 may
each traverse one or more networks that connect edge service 105 to end points 101,
examples of which include (but are not limited to) transit networks, peering networks,
backbone networks, Internet service provider (ISP) networks, local ISPs, and any other type

of network, combination of networks, or variation thereof.

10

15

20

25

WO 2020/061168 PCT/US2019/051687

[0033] Edge service 105 transmits various packet flows within the context of logical
connections, represented by connections 111, 112, 113, 114, 115, and 116. The packets of
each packet flow traverse a given outbound path selected for the flow when sent by edge
service 105 to a destination. Thus, a given connection may also be considered to traverse a
given outbound path. For exemplary purposes, Figure 1 illustrates that connections 111 and
112 traverse outbound path 121; connections 113 and 114 traverse outbound path 123; and
connections 115 and 116 traverse outbound path 125. In the inbound direction, the packets
may traverse the same or a different path as they took in the outbound direction.

[0034] Each connection may be described in terms of a tuple formed by one or more
identifying values of the connection. Examples of identifying values of a connection include,
but are not limited to its source address, source port, target address, target port, and protocol.
Tuple 117 is given as an example of identifying values for connection 116. Edge service 105
may utilize said tuples to calculate hash values, which may then be used to navigate one or
more routing tables that define which route (or outbound path) to use for a given
transmission. As the routes may fail or otherwise underperform from time to time, edge
service 105 employs a reroute process 200 for rerouting connections in response to failures or
other performance issues.

[0035] Referring to Figure 2, reroute process 200 may be implemented in program
instructions in the context of any of the software applications, modules, components, or other
such programming elements deployed in the various elements of edge service 105, such as
routers and servers. The program instructions direct the underlying physical or virtual
computing system or systems to operate as follows, referring parenthetically to the steps in
Figure 2 in the context of operational environment 100 in Figure 1.

[0036] To begin, edge service 105 sends a packet flow over an initial outbound path

(step 201). The packet flow may comprise packets that carry the content requested by an end

10

15

20

25

WO 2020/061168 PCT/US2019/051687

point. The end point (or edge service 105) establishes a connection via which the packets
may be transmitted, e.g. a TCP connection or the like.

[0037] Next, edge service 105 tracks the forward progress of the connection while
sending (or attempting to send) packets to the end point (step 203). As packets are sent from
edge service 105 to the end point, the end point replies with acknowledgement messages
(ACKs) in accordance with the connection protocol implemented between the end point and
edge service 105. Edge service 105 tracks the forward progress of the connection by, for
example, monitoring for ACKs from the end point, and determines whether the path has
failed based on the monitored forward progress of the connection (step 205). Monitoring for
ACKs may include determining whether an ACK has been received for a certain amount of
time. If no ACK is received during the amount of time, then a failure may be declared. The
amount of time may be a global value or a non-global value. In the case of a non-global
value, the timeout period may depend on the round-trip time (RTT) of the connection. That
is, the timeout period may vary on a per-connection basis, based on the RTT for a given
connection.

[0038] In an alternative to declaring failures based on the absence of an ACK, a path
may be considered to have failed upon a retransmit timeout for a connection occurring. A
failure could also be declared in response to a retransmit of a segment occurring after more
than a certain amount of time since it was previously transmitted. In still another alternative,
a failure could be declared in response to a retransmit of a segment occurring after more than
a certain amount of time has elapsed since a connection entered a retransmit mode.

[0039] In some implementations, an outbound path may have failed before a
connection between an end point and a server can even be established. In such instances, the
outbound path may be considered to have failed when the number of SYN-ACK

retransmissions meets or exceeds a threshold.

10

15

20

25

WO 2020/061168 PCT/US2019/051687

[0040] If the path has not failed, then edge service 105 continues to monitor the
forward progress of the connection. However, if the path has failed, edge service 105
increments a failure counter associated with the connection (step 206). Failure counters 119
in Figure 1 are representative of the failure counters that edge service 105 may maintain for
each connection. Failure counters 119 include: counter N111 corresponding to connection
111; counter Ni12 corresponding to connection 112; counter Ni13 corresponding to connection
113; counter Ni14 corresponding to connection 114; counter Ni15 corresponding to connection
115; and counter Ni1¢ corresponding to connection 116.

[0041] Having incremented the failure counter, edge service 105 proceeds to generate
a hash value from the incremented failure counter and the tuple associated with the
connection (step 207). This may involve, for example, mixing the failure counter with the
tuple. Mixing the failure counter with the tuple may include replacing one or more of the
tuple values with the failure counter, encoding the failure counter in one or more of the tuple
values, adding the failure counter to the tuple, or otherwise modifying the tuple to include the
value of the failure counter.

[0042] Since the path has failed or is otherwise underperforming, edge service 105
determines to move the packet flow to a new outbound path, so as to avoid whatever problem
along the initial outbound path may be causing the path failure. Edge service 105 selects the
new outbound path based on the generated hash value (step 209). The hash value may be
used to select a specific route from a routing table. In some implementations, the hash value
is also used to select the routing table from a set of routing tables.

[0043] Edge service 105 then reroutes (sends) the packet flow over the new outbound
path (step 211). At the same time, other connections that also entered into a failed state may
also be rerouted by edge service to the same or other outbound paths. However, the failure

condition that triggered the rerouting may eventually abate. Therefore, it may be desired to

10

10

15

20

25

WO 2020/061168 PCT/US2019/051687

eventually return (or reroute) all of the rerouted connections to their original outbound paths.
If so desired, this step could be performed after a period of time, after the original outbound
path has been checked, or in response to some other suitable condition having been met. For
instance, a given connection could be returned to the original outbound path and, if
successful, then other connections could also be returned to the original outbound path.
[0044] Figures 3A-3C briefly illustrate the operation of a hash function 301 as applied
in three different scenarios. Itis assumed for exemplary purposes thatc #x,j#k, k#1, and 1
#).

[0045] In scenario 300A, tuple 313 for one connection is mixed with the failure
counter 323 for that connection. Mixed input is supplied to hash function 301, which
produces hash value 303 (). In scenario 300B, tuple 314 for a different connection is
mixed with the failure counter 324 for that connection. The mixed input is supplied to hash
function 303, which produces value 304 (k). However, in scenario 300C, tuple 313 is
again mixed with failure counter 323. The mixed input produces hash value 305 (“17).
[0046] It may be appreciated from the foregoing scenarios that mixing the failure
counters into the tuples decreases the likelihood that all of the packet flows are rerouted to the
same new outbound path. That is, mixing the failure counter into the tuple increases the
likelihood that the rerouted packet flows are well-distributed over multiple outbound paths,
so as to avoid burying a given outbound path by rerouting the packet flows to it. This is
because, the greater the difference between the hash inputs, the greater the likelihood that
hash values will differ. The difference between the hash inputs is increased by mixing in the
different failure counters. In fact, in some implementations, the hash function may exhibit
an avalanche effect such that only a small change to the hash input (e.g. changing 1 bit)
results in a large change to the hash output (e.g. 50% of the bits), thereby ensuring that a

single outbound path is not overwhelmed.

11

10

15

20

25

WO 2020/061168 PCT/US2019/051687

[0047] In an alternative to mixing the failure counter into the hash input, a random
value could be added to the output of the hash function upon an initial path failure. Then, the
hash output could be incremented upon the detection of every subsequent path failure.

[0048] Figures 4A-4B illustrate another operational scenario to further demonstrate the
technical effects produced by reroute process 200 as employed by edge service 105 in
operational environment 100. Referring to Figure 4A, end points 101 establish connections
110 with edge service 105 to obtain content such as web pages, video, images, text, objects,
applications, and the like. The end points 101 communicate individual requests for the
content over the connections. Edge service 105 receives the requests and attempts to reply
with the content. In some implementations, edge service 105 may obtain the content from an
origin server or elsewhere if it does not already have the content at its disposal.

[0049] Edge service 105 transmits the content in the form of packets. The packets
make up a packet flow from edge service 105 to a specific one of end points 101. A given set
of packets (or packet flow) sent in the outbound direction within the context a connection
established between the edge service 105 and the end point traverses one of outbound paths
121, 123, and 125. When the end point receives a packet, it replies with an acknowledgement
message to signal to edge service 105 that the packet was received and need not be
retransmitted. Such traffic in-bound to edge service 105 may traverse the same or a different
path as the packets sent in the outbound direction.

[0050] In this example scenario, traffic 301 is exchanged in the outbound direction
between edge service 105 and one or more of end points 101 via connection 111 and 112
over outbound path 121. Acknowledgments and other inbound traffic may traverse the same
or a different path. Similarly, traffic 303 is exchanged in the outbound direction between
edge service 105 and one or more of end points 101 via connection 115 and 116 over

outbound path 125. Acknowledgments and other inbound traffic may traverse the same or a

12

10

15

20

25

WO 2020/061168 PCT/US2019/051687

different path. However, in an attempt to send traffic 305 (packets) to one or more of end
points 101, a failure 310 blocks the packets from being received. Accordingly, no
corresponding acknowledgements reach edge service 105 (as perhaps none have been sent).
[0051] Edge service 105, employing reroute process 200, detects the absence of
forward progress on both connections, connection 113 and connection 114. Edge service 105
increments their respective failure counters N113 and Ni14 to c+1 and x+1 respectively. The
incremented failure counters are mixed with the tuple for each respective connection and
input into a hash function. The hash function calculates a hash value from the mixed input.
Edge service 105 then uses the hash value to select a new outbound route for the packet flows
associated with the “failed” connections.

[0052] Figure 4B illustrates an exemplary result of the fast reroute. Connection 113
has been rerouted to outbound path 121, while connection 114 has been rerouted to outbound
path 125. Traffic 301 now includes packets and possibly acknowledgements flowing via
connection 113, while traffic 303 includes packets and acknowledgements flowing via
connection 114. In addition, the failure counters have been incremented and may remain so,
at least for a period of time, to promote path diversity with respect to traffic rerouting. It may
be appreciated that the inbound acknowledgements may take the same or a different path as
the outbound packets.

[0053] Figure 5 illustrates operational environment 500 in an implementation.
Operational environment 501 includes end points 501, edge service 502, and origin servers
505 (optional). Edge service 502 includes cache servers 503, of which cache server 504 is
representative, as well as access point 507. Cache server 504 includes routing tables 508 and
509, in addition to counter table 519.

[0054] End points 501 communicate with edge service 502 via one or more provider

networks, represented for the sake of simplicity by provider network 531, provider network

13

10

15

20

25

WO 2020/061168 PCT/US2019/051687

533, and provider network 535. It may be appreciated that one or more other provider
networks may connect provider networks 531, 533, and 535 to end points 501.

[0055] In operation, end points 501 establish connections 510 with cache servers 503
in edge service 502 in accordance with a suitable connection-oriented protocol, such as TCP,
RTP, QUIC, and the like. The end points request content from the cache servers 503 and the
cache servers reply with the content. In instances where a given server does not have the
content, the server obtains the content from one or more of origin servers 505 or from another
cache server.

[0056] Cache servers 503 transmit the content to end points 501 via one or more of
paths 521, 523, 525. Paths 521, 523, and 525 are representative the various paths traffic may
take in an outbound direction from access point 507 to end points 501. Traffic sent from end
points 501 to access point 507 may travel the same or different paths, but in the inbound
direction from the perspective of edge service 502. Paths 521, 523, and 525 each traverse
one or more networks that connect edge service 502 to end points 501, of which provider
networks 531, 533, and 535 are representative. Examples of provider networks 531, 533, and
535 include (but are not limited to) transit networks, peering networks, backbone networks,
Internet service provider (ISP) networks, local ISPs, and any other type of network,
combination, or variation thereof. Examples of access point 507 include, but are not limited
to, physical or virtual switches, physical or virtual routers, or any combination or variation
thereof.

[0057] Cache servers 503 transmit their various packet flows within the context of the
logical connections made with end points 501, represented by connections 511, 512, 513,
514, 515, and 516. The packets of each packet flow traverse a given outbound path selected
for the flow. Thus, a given connection may also be considered to traverse a given outbound

path. For exemplary purposes, Figure 5 illustrates that connections 511 and 512 traverse path

14

10

15

20

WO 2020/061168 PCT/US2019/051687

521 in the outbound direction; connections 513 and 514 traverse path 523 in the outbound
direction; and connections 515 and 516 traverse path 525 in the outbound direction. Traffic
flowing in the inbound direction may take the same or different path as the outbound traffic.
[0058] Each connection may be described in terms of a tuple formed by one or more

identifying values of the connection. Examples of identifying values of a connection include

but are not limited — to its source address, source port, target address, target port, and
protocol. Tuple 517 is given as an example of identifying values for connection 516. Cache
servers 503 may utilize said tuples to calculate hash values, which may then be used to
navigate one or more routing tables that define which route (or outbound path) to use for a
given transmission. As the routes may fail or otherwise underperform from time to time, the
cache servers 503 employ a reroute process 600 for rerouting traffic in response to failures or
other performance issues. In addition, cache servers 503 employ a reroute process 700.
Reroute process 600 is described in more detail in Figure 6, while reroute process 700 is
illustrated in Figure 7.

[0059] Reroute process 600 and reroute process 700 may each be implemented in
program instructions in the context of any of the software applications, modules, components,
or other such programming elements of cache servers 503. The program instructions direct
the underlying physical or virtual computing system or systems (of which computing system
901 is representative) to operate as follows, referring parenthetically to the steps in Figure 6
and Figure 7 in the context of operational environment 500 in Figure 5 and with respect to
cache server 504.

[0060] Referring to Figure 6, cache server 504 sets a firewall marker (fwmark) to “0” on

the socket used for a connection, via which the cache server sends the packets in a flow (step

15

10

15

20

WO 2020/061168 PCT/US2019/051687

601). Setting the firewall marker to zero indicates to reroute process 700 in the cache server
that a main or base routing table should be used to select a route for a packet.

[0061] The packets are sent by access point 507 to an end point. If the end point
receives the packets, it replies with acknowledgments. If not, then no acknowledgments are
forthcoming. Cache server 504 therefore monitors for the end point associated with a
connection to return an acknowledgment (step 603) and makes a determination, based on the
forward progress on the connection, whether the path has failed (step 605). An absence of
forward progress would be indicated by a lack of any acknowledgment message.

[0062] If the path has not failed, then cache server 504 continues to monitor the
forward progress of packets being sent on the connection to the end point. However, if the
path has failed, then cache serer 504 increments a failure counter associated with the
connection (step 607). In this implementation, the failure counter is represented in the upper
4 bits of the firewall marker value.

[0063] Failure counters 519 in Figure 5 are representative of the failure counters that
cache server 504 may maintain for each connection that it makes with an end point. Failure
counters 519 include: counter Nsi; corresponding to connection 511; counter Nsi2
corresponding to connection 512; counter Ns;3 corresponding to connection 513; counter Nsi4
corresponding to connection 514; counter Ns;5 corresponding to connection 515; and counter
Nis16 corresponding to connection 516.

[0064] Having incremented the failure counter for the connection, cache server 504
continues to process and send packets to access point 507 in the context of the same
connection, but with the firewall marker for the connection set to a value greater than zero
(step 609). The process repeats for the remaining packets in the flow or until some other

event causes the process to cease.

16

10

15

20

25

WO 2020/061168 PCT/US2019/051687

[0065] Referring to reroute process 700 in Figure 7, cache server 504 generates the
packets to send over a connection to an end-point (step 701) and identifies which routing
table to use based on the value of the firewall marker identified on the socket for the
connection (step 703). If the firewall value is zero, then cache server 504 utilizes table 508.
Howeyver, if the firewall value is greater than zero, then cache server 504 uses table 509. It
may be assumed for exemplary purposes that the base table (table 508) contains fewer routes
than table 509. Thus, a non-zero value for the firewall marker results in a greater selection of
potential routes for a given packet.

[0066] Next, cache server 504 generates a hash value using a mixed tuple produced
from the failure counter and the tuple for a subject connection (step 705). For instance, cache
server 504 may mix the failure counter with the tuple. Mixing the failure counter with the
tuple may include replacing one or more of the tuple values with the failure counter, encoding
the failure counter in one or more of the tuple values, adding the failure counter to the tuple,
or otherwise modifying the tuple to include the value of the failure counter.

[0067] The mixed input is supplied to a hash function implemented by cache server
504 to generate the hash value. The hash function is used to map input values to possible
output values. The output values (hash values) may then be used to lookup a particular
outbound path or route for a packet.

[0068] Cache server 504 enters table 508 with the hash value to select the appropriate
route for the packet (step 707). Table 508 stores a list of routes in association with hash
values, hash ranges, or other such indications. As such, the resulting hash value is used to
look-up or otherwise identify the corresponding route (outbound path). Cache server 504
then sends the packet addressed to the end point via the identified route (step 709). This may
include, for example, sending the packet to access point 507 with the identified route

indicated in the packet, in data that encapsulates the packet, or by some other mechanism. In

17

10

15

20

25

WO 2020/061168 PCT/US2019/051687

some implementations, each route is identified by a different multi-protocol label switching
(MPLS) label.

[0069] Cache server 504 continues to generate and process incoming packets in this
manner. Thus, as the firewall marker is incremented, the resulting hash value may change.
The change in hash value may drive a change in outbound routes. In this manner, packet
flows may be rerouted, but without over-burdening any given route.

[0070] Figures 8A-8C illustrate another operational scenario to further demonstrate the
technical effects produced by reroute process 600 and reroute process 700. Referring to
Figure 8A, end points 501 establish connections 510 with edge service 502 to obtain content
such as web pages, video, images, text, objects, applications, and the like. The end points
501 communicate individual requests for the content over the connections. Cache server 504
receives the requests and attempts to reply with the content. In some implementations, cache
server 504 may obtain the content from origin server 506 or elsewhere if it does not already
have the content at its disposal.

[0071] Cache server 504 sends the packets to access point 507 to send in the form of
packets to the end points. The packets make of a packet flow from edge service 502 to a
specific one of end points 501. A given set of packets (or packet flow) sent within the
context a connection established between the edge service 502 and the end point traverses
one of paths 521, 523, and 525. When the end point receives a packet, it replies with an
acknowledgement message to signal to edge service 502 that the packet was received and
need not be retransmitted. The acknowledgements may traverse the same or a different path
as the packets but are shown as traversing the same provider network merely for the sake of
simplicity.

[0072] In this example scenario, traffic 801 (including packets and

acknowledgements) is exchanged between edge service 502 and one or more of end points

18

10

15

20

WO 2020/061168 PCT/US2019/051687

501 via connection 511 and 512 over path 521, although the acknowledgements may
optionally take a different path. Similarly, traffic 503 (including packets and
acknowledgments) is exchanged between edge service 505 and one or more of end points 501
via connection 515 and 516 over outbound path 525, although the acknowledgements may
optionally take a different path. However, in an attempt to send traffic 505 (packets) to one
or more of end points 501, a failure 810 blocks the packets from being received.
Accordingly, no corresponding acknowledgements reach edge service 502, possibly because
none have been sent since the packets were blocked.

[0073] Cache server 504, employing reroute process 600, detects the absence of
forward progress on both connections, connection 513 and connection 514. Cache server 504
increments their respective failure counters Nsi3 and Nsi4 to c+1 and x+1 respectively. The
incremented failure counters are mixed with the tuple for each respective connection and
input into a hash function by access point 507. The hash function calculates a hash value
from the mixed input. Cache server 504 then uses the hash value to select a new outbound
route for the packet flows associated with the “failed” connections.

[0074] Figure 8B illustrates an exemplary result of the fast reroute. Connection 513
has been rerouted to path 521, while connection 514 has been rerouted to outbound path 525.
Traffic 501 now includes both packets and acknowledgements flowing via connection 513,
while traffic 503 includes packets and acknowledgements flowing via connection 514. In
addition, the failure counters have been incremented and may remain so, at least for a period
of time, to promote path diversity with respect to traffic rerouting. It may be appreciated that
the acknowledgement messages may traverse different return paths, including traversing a
different provider network(s) than the path travelled by the outbound packets, and are shown

as traversing the same paths merely for the sake of simplicity.

19

10

15

20

25

WO 2020/061168 PCT/US2019/051687

[0075] Figure 8C illustrates the sequence of operations discussed with respect to
Figures 8A and 8B with respect to a single end point. In operation, end point 502 sends a
content request via provider network 531 and access point 507 to cache server 504. Cache
server 504 receives the content request and determines whether the request is a “hit” or a
“miss.” A hit means that the server has the requested content, whereas a miss means that the
server must obtain the content from an origin server 506, another cache server, or elsewhere.
[0076] Cache server 504 replies to the content request by sending the content to the
end point via access point 507. Cache server 504 sets a firewall marker value on the socket
for the connection to zero, which causes cache server 504 look up the route for the packets in
table 508. Cache server 504 uses a hash value calculated using a mixed input of the tuple for
the connection and the failure counter to look up the route. Accordingly, cache server 504
transmits packets to access point 507 with a label or other such indication that identifies the
selected route/provider (e.g. PID-1, for network provider 531).

[0077] Access point 507 receives the packets from cache server 504 and sends the
packets on the prescribed route addressed to end point 502. End point 502 receives the
packets and replies with acknowledgment messages per the connection protocol used to
establish a connection between end point 502 and cache server 504. As mentioned, the
acknowledgment messages may (or may not) traverse the same path as the packets.
However, a failure 510 along the path between cache server 504 and end point 502 may result
in lost packets or other conditions that prevent end point 502 from transmitting an ACK to
cache server 504 (since end point 502 would have received nothing to acknowledge).

[0078] The absence of forward progress on the connection caused by the failures
triggers cache server 504 to increment a failure counter encoded in the firewall marker.
Cache server 504 continues to send packets to the end point 502, but now with the firewall

marker on the connection set to the non-zero value of the failure counter. The non-zero value

20

10

15

20

25

WO 2020/061168 PCT/US2019/051687

of the firewall marker triggers cache server 504 to look in table 509 for the appropriate route.
Cache server 504 does so again with a hash value calculated based on the failure counter and
the tuple for the subject connection. However, since a different table is being used, and
because the failure counter has been incremented, it is very likely that cache server 504 picks
a route other than the existing path. Accordingly, cache server 504 sends the packets
addressed to end point 502 but via the new outbound path, so as to avoid whatever problems
along the old route prevented end point 502 from returning ACKs to cache server 504. In this
example, cache server 504 affects this by identifying provider network 533 as the new route
(e.g. PID-2). As the packets reach end-point 502 successfully, end-point 502 replies with
acknowledgments, which may travel a return path that is the same or different than that of the
incoming packets.

[0079] Figure 9 illustrates computing system 901 that is representative of any system
or collection of systems in which the various processes, programs, services, and scenarios
disclosed herein may be implemented. Examples of computing system 901 include, but are
not limited to, server computers, routers, web servers, cloud computing platforms, and data
center equipment, as well as any other type of physical or virtual server machine, physical or
virtual router, container, and any variation or combination thereof.

[0080] Computing system 901 may be implemented as a single apparatus, system, or
device or may be implemented in a distributed manner as multiple apparatuses, systems, or
devices. Computing system 901 includes, but is not limited to, processing system 902,
storage system 903, software 905, communication interface system 907, and user interface
system 909 (optional). Processing system 902 is operatively coupled with storage system
903, communication interface system 907, and user interface system 909.

[0081] Processing system 902 loads and executes software 905 from storage system

903. Software 905 includes and implements reroute process 906, which is representative of

21

10

15

20

25

WO 2020/061168 PCT/US2019/051687

the reroute processes discussed with respect to the preceding Figures. When executed by
processing system 902 to provide packet rerouting, software 905 directs processing system
902 to operate as described herein for at least the various processes, operational scenarios,
and sequences discussed in the foregoing implementations. Computing system 901 may
optionally include additional devices, features, or functionality not discussed for purposes of
brevity.

[0082] Referring still to Figure 9, processing system 902 may comprise a micro-
processor and other circuitry that retrieves and executes software 905 from storage system
903. Processing system 902 may be implemented within a single processing device but may
also be distributed across multiple processing devices or sub-systems that cooperate in
executing program instructions. Examples of processing system 902 include general purpose
central processing units, graphical processing units, application specific processors, and logic
devices, as well as any other type of processing device, combinations, or variations thereof.
[0083] Storage system 903 may comprise any computer readable storage media
readable by processing system 902 and capable of storing software 905. Storage system 903
may include volatile and nonvolatile, removable and non-removable media implemented in
any method or technology for storage of information, such as computer readable instructions,
data structures, program modules, or other data. Examples of storage media include random
access memory, read only memory, magnetic disks, optical disks, flash memory, virtual
memory and non-virtual memory, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other suitable storage media. In no case is the
computer readable storage media a propagated signal.

[0084] In addition to computer readable storage media, in some implementations
storage system 903 may also include computer readable communication media over which at

least some of software 905 may be communicated internally or externally. Storage system

22

10

15

20

25

WO 2020/061168 PCT/US2019/051687

903 may be implemented as a single storage device but may also be implemented across
multiple storage devices or sub-systems co-located or distributed relative to each other.
Storage system 903 may comprise additional elements, such as a controller, capable of
communicating with processing system 902 or possibly other systems.

[0085] Software 905 (including reroute process 906) may be implemented in program
instructions and among other functions may, when executed by processing system 902, direct
processing system 902 to operate as described with respect to the various operational
scenarios, sequences, and processes illustrated herein. For example, software 905 may
include program instructions for implementing a reroute process to reroute packet traffic as
described herein.

[0086] In particular, the program instructions may include various components or
modules that cooperate or otherwise interact to carry out the various processes and
operational scenarios described herein. The various components or modules may be
embodied in compiled or interpreted instructions, or in some other variation or combination
of instructions. The various components or modules may be executed in a synchronous or
asynchronous manner, serially or in parallel, in a single threaded environment or multi-
threaded, or in accordance with any other suitable execution paradigm, variation, or
combination thereof. Software 905 may include additional processes, programs, or
components, such as operating system software, virtualization software, or other application
software. Software 905 may also comprise firmware or some other form of machine-readable
processing instructions executable by processing system 902.

[0087] In general, software 905 may, when loaded into processing system 902 and
executed, transform a suitable apparatus, system, or device (of which computing system 901
is representative) overall from a general-purpose computing system into a special-purpose

computing system customized to provide packet rerouting. Indeed, encoding software 905 on

23

10

15

20

25

WO 2020/061168 PCT/US2019/051687

storage system 903 may transform the physical structure of storage system 903. The specific
transformation of the physical structure may depend on various factors in different
implementations of this description. Examples of such factors may include, but are not
limited to, the technology used to implement the storage media of storage system 903 and
whether the computer-storage media are characterized as primary or secondary storage, as
well as other factors.

[0088] For example, if the computer readable storage media are implemented as
semiconductor-based memory, software 905 may transform the physical state of the
semiconductor memory when the program instructions are encoded therein, such as by
transforming the state of transistors, capacitors, or other discrete circuit elements constituting
the semiconductor memory. A similar transformation may occur with respect to magnetic or
optical media. Other transformations of physical media are possible without departing from
the scope of the present description, with the foregoing examples provided only to facilitate
the present discussion.

[0089] Communication interface system 907 may include communication connections
and devices that allow for communication with other computing systems (not shown) over
communication networks (not shown). Examples of connections and devices that together
allow for inter-system communication may include network interface cards, antennas, power
amplifiers, RF circuitry, transceivers, and other communication circuitry. The connections
and devices may communicate over communication media to exchange communications with
other computing systems or networks of systems, such as metal, glass, air, or any other
suitable communication media. The aforementioned media, connections, and devices are
well known and need not be discussed at length here.

[0090] Communication between computing system 901 and other computing systems

(not shown), may occur over a communication network or networks and in accordance with

24

10

15

20

WO 2020/061168 PCT/US2019/051687

various communication protocols, combinations of protocols, or variations thereof.
Examples include intranets, internets, the Internet, local area networks, wide area networks,
wireless networks, wired networks, virtual networks, software defined networks, data center
buses and backplanes, or any other type of network, combination of network, or variation
thereof. The aforementioned communication networks and protocols are well known and
need not be discussed at length here.

[0091] As will be appreciated by one skilled in the art, aspects of the present invention
may be embodied as a system, method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that may all generally be referred to

e

herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention
may take the form of a computer program product embodied in one or more computer
readable medium(s) having computer readable program code embodied thereon.

[0092] The included descriptions and figures depict specific embodiments to teach those
skilled in the art how to make and use the best mode. For the purpose of teaching inventive
principles, some conventional aspects have been simplified or omitted. Those skilled in the
art will appreciate variations from these embodiments that fall within the scope of the
disclosure. Those skilled in the art will also appreciate that the features described above may
be combined in various ways to form multiple embodiments. As a result, the invention is not

limited to the specific embodiments described above, but only by the claims and their

equivalents.

25

10

15

20

25

0 2020/061168 PCT/US2019/051687

CLAIMS

What is claimed is:

1. A method of operating a server in an infrastructure service to reroute a packet
flow sent from the server to an end point over an outbound path, the method comprising:

detecting a failure of the outbound path based on at least a measure of forward
progress made on a connection between the server and the end point;

in response to the failure, generating a hash value based at least on an
identifying value of the connection and a failure counter associated with the measure of
forward progress made on the connection;

selecting a next outbound path for the packet flow based on at least the hash
value generated in response to the failure; and

sending the packet flow over the next outbound path to the end point.

2. The method of claim 1 wherein detecting the failure of the outbound path
occurs when the measure of forward progress made on the connection indicates an absence

of any forward progress for an amount of time.

3. The method of claim 2 further comprising incrementing the failure counter each
time the measure of forward progress made on the connection indicates the absence of any

forward progress for the amount of time.

4. The method of claim 1 wherein the outbound path from the server to the end
point traverses two or more networks and wherein the next outbound path from the server to

the end point traverses at least one network not traversed by the outbound path.

26

10

15

20

WO 2020/061168 PCT/US2019/051687

5. The method of claim 1 wherein generating the hash value comprises generating
an input to a hash function from at least the identifying value and the failure counter and

executing the hash function using the input to produce the hash value.

6. The method of claim 5 wherein generating the input to the hash function
comprises mixing the failure counter with a set of identifying values in a tuple associated

with the connection, wherein the set of identifying values includes the identifying value.

7. The method of claim 6 wherein the set of identifying values in the tuple
comprises a protocol identifier, a source Internet protocol (IP) address, a source port, a

target [P address, and a target port.

8. The method of claim 7 wherein sending the packet flow over the next outbound
path to the end point comprises sending the packet to a router with the failure counter

encoded in a subset of bits of a firewall marker of each packet.

9. The method of claim 8 wherein the connection comprises a transmission control

protocol (TCP) connection.

10. A computing apparatus comprising:
one or more computer readable storage media;
a processing system operatively coupled with the one or more computer

readable storage media; and

27

10

15

20

25

0 2020/061168 PCT/US2019/051687

program instructions stored on the one or more computer readable storage
media for operating a server in an infrastructure service to reroute a packet flow sent from
the server to an end point over an outbound path;

wherein the program instructions, when executed by the processing system,
direct the server to at least:

detect a failure of the outbound path based at least on a measure of forward
progress made on a connection between the server and the end point;

in response to the failure, generate a hash value based at least on an identifying
value of the connection and a failure counter associated with the connection;

select a next outbound path for the packet flow based on the hash value; and

send the packet flow over the next outbound path from the server to the end

point.

11. The computing apparatus of claim 10 wherein the program instructions direct
the server to detect the failure of the outbound path when the measure of forward progress

made on the connection indicates an absence of any forward progress for an amount of time.

12. The computing apparatus of claim 11 wherein the program instructions direct
the server to increment the failure counter each time the measure of forward progress made

on the connection indicates the absence of any forward progress for the amount of time.

13. The computing apparatus of claim 10 wherein the outbound path from the
server to the end point traverses two or more networks and wherein the next outbound path
from the server to the end point traverses at least one network not traversed by the outbound

path.

28

10

15

20

WO 2020/061168 PCT/US2019/051687

14. The computing apparatus of claim 10 wherein to generate the hash value, the
program instructions direct the server to generate an input to a hash function from at least
the identifying value and the failure counter and execute the hash function using the input to

produce the hash value.

15. The computing apparatus of claim 14 wherein to generate the input to the hash
function, the program instructions direct the server to substitute the failure counter for at
least one of a set of identifying values in a tuple associated with the connection, wherein the

set of identifying values includes the identifying value.

16. The computing apparatus of claim 15 wherein the set of identifying values in
the tuple comprises a protocol identifier, a source Internet protocol (IP) address, a source

port, a target IP address, and a target port.

17. The computing apparatus of claim 16 the program instructions direct the server

to encode the failure counter in a subset of bits of a firewall marker of each packet.

18. The computing apparatus of claim 17 wherein the connection comprises a
transport layer connection.
19. A system for rerouting packets in a packet flow sent from the server to an end
point over an outbound path, the system comprising:

means for detecting a failure of the outbound path based at least on a measure of

forward progress made on a connection between the server and the end point;

29

10

15

20

25

0 2020/061168 PCT/US2019/051687

means for encoding a failure counter associated with the connection in a
firewall marker of each of the packets of the packet flow;

means for selecting a routing table from a set of routing tables based on the
firewall marker in each of the packets;

means for generating a hash value based at least on identifying values of the
connection and the failure counter associated with the connection;

means for selecting a next outbound path for the packet flow based on the hash
value; and

means for sending the packet flow over the next outbound path to the end point.

20. The system of claim 19 further comprising:

means for incrementing the failure counter each time the measure of forward
progress made on the connection indicates the absence of any forward progress for the
amount of time;

wherein detecting the failure of the outbound path occurs when the measure of
forward progress made on the connection indicates an absence of any forward progress for
an amount of time;

wherein the outbound path from the server to the end point traverses two or
more networks and wherein the next outbound path from the server to the end point
traverses at least one network not traversed by the outbound path;

wherein the identifying values of the connection, comprise a protocol identifier,
a source Internet protocol (IP) address, a source port, and a target IP address; and

wherein the connection comprises a transport layer connection.

30

PCT/US2019/051687

WO 2020/061168

1/i2

FRAGRSEA
bw‘m
SHORORURI { recomond | yod/ssamppe wamy | rodssppe aands)

01

:::::

oo,

ST HLYAANNOSENO |

ra
{; > SRR MOURCE
EEvt ! H 5T HLYdaNNOFINg |
BEEEEIN ¥ .
............................... iﬁ@%v
{127 HEVaONNOELNO |

PCT/US2019/051687

WO 2020/061168

2112

MHLNNCD Hd TV]

T INGWIIONT

THEANHA

HIVddOOdLno AEN

HHL JHAO MO T LDIVAANGS
i)

HYTVAHSYHEHLNO (35vd
HIVAONOOHLOO MAN LA TES

7R

HHINDOD HVEVAE ANV D INOLLYENNG)
L0 WOSAAVIYA HSYHELYVYENAD
Fia)

Ty (NOUDENNOD

53A

LD 10

3774
SSEDOUd Qmwﬂgm% SOVHL
1774 HIVd ANNCHLOOTYLIING

AC MO L LTHOVAANAS

007

PCT/US2019/051687

WO 2020/061168

3/12

0L

3

S

0L

RGO
1743
M.D.m. - Teo=d0y
NOLIDNOY ig £
HSYH (ncie .@a&m e
>

{ yoocraid | podssaippe 5 | HodSSOPe Cinos)

haY
20
HE RATA
16 7
NOLDN gt
HSYH {nch poxiay) e
2
{ ociond | podssaippe pim | podssorppe amos)
®
HO0C
YERHHA
10¢
NOLONNT e
HSVH Gk @Eém c1e
2
{ yoooiad | podyssoippe o8im. | HodSspe Somes)
Y

Mt

PCT/US2019/051687

WO 2020/061168

4712

SISO
by

YyEEOEd
bw‘m
gﬁ@ﬁ@ { recomond | yod/ssamppe wamy | rodssppe aands)
U

:::::

oo,

ST HLYAANNOSENO |

Sl omnas

T %
=4 ¥
M7 i
1T
4 ? ¥
o
e
v
o
+
»
-
-
o

H€50H

oot

oo,

PCT/US2019/051687

WO 2020/061168

9y TEHA

%t LIt

2
oy ot} SUOTOSUH00 { recomond | yod/ssamppe wamy | rodssppe aands)
=N =TI | vl
MHTNHi«Z .m.HM:z §

u_.-\
< Y1
.
.
.
.
e

PCT/US2019/051687

WO 2020/061168

6/12

Y

NIDHO |

SEATHA

018

(2% 0=ty |

A=T0] g=0N
P X< BT

e L00L At

{(SHPINOD)

LS
e
{ wociond] podsappe pim | podssoppe amos)

3
SRIOMIEN

h, JHAAOED

MEAYES FHOVD w B -

HAAACH]

PRIOMIEIN

YAANOUS et %
- ;

PCT/US2019/051687

WO 2020/061168

SHATHA

L < HEVINASHIIM
HHLAGY OL STFHOVAANAS

T

ORI JOST b BOCHD

e TNOLLENNOD

HAINAOD RV TV INSBASHON]

w0

INICd AN NCEA SHOVSSHN
JNANODOF TAMONX OV 30 JOTINOW

T

L= VN HEM
AHHLOACY OL SLEADVAANTS

PCT/US2019/051687

WO 2020/061168

12

8

LA

&L

ALNOH I TS

JHL VIAINIOd Q?WW.QH S LIV CINAS

L

HOTVAHSYHAHL DN

HIAVL GHL TS ﬂwww NEHLOOYE AALINGAL

5778 TN CEXOA
ONISO HYTVA HSVHALYYENAD
Y
W SV IVA NUVINML NO GaSvd
FIEVL wémmm?%m@
T NOTLIENNGO VIA

ONAS QL SIHIOVd ALV EENTD

=

PCT/US2019/051687

WO 2020/061168

9/12

(| wanis
NIDRIO_

V8ER T HA

{(SHPINOD)
01s

Wy

L
e
{ wociond] podsappe pim | podssoppe amos)

PCT/US2019/051687

WO 2020/061168

10/12

Iy

HEX K]

Nlo‘ryw ula,rz
A ﬂvy & Ew/m
{ ¥ =t w7 L=t .Z

oy

NIOTHO

{(SBOTPIND)

L1
2
{1000y | yiodyssarppe Wiy | Hodssppe comes)

W
rp)

4

SHEOMIAN

HAAACH]

mmmm\wgmm S J

PCT/US2019/051687

WO 2020/061168

DR HEEIA

11712

"
% % % . /my 3
& ya &
. BRI MO A =T TS » m KIS AMRDDR
> AN Y
i<l papeo e 2 [T TSy < {BISKCO) Joced s
[ax v idmng = S
Ors .
ALY N@o ST MCEPE
LY
T R > T T M
| iSoc<map)dnapo =0y
pd pd
A 5T Ty e p m m HERUSPRMRIDE € WAVSPAMOLEPE
3 LN . 3
m (g dreapoy f=mf (- Boneo)ovped. ~ {(EEJ00) et 4 (oo ed e
m aaaaa e Al »
(FAIORCD) FAERE F3OR00
ossugif , .
A3 w » BADAT T
¢ e e LLge LI ¢
YAAHAS NIDRIO HANGAS AHOVD INIOd ROMIAN RIOMIEAN LNIOd N
SSHXOV AL HHGIACE]
&
608

PCT/US2019/051687

WO 2020/061168

12712

SHMTTA

A HAS ONISSEOOMd | FTIWINGO

SAS | W6 WHISAS | 06 SAS

96 SSHIOUEd dL10dH
36 HEVMLIOS
06 WHISAS FDVIQLS
06 INFLSAS DNULING S

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 19/51687

A.
IPC -

CLASSIFICATION OF SUBJECT MATTER

HO4L 12/911; HO4L 12/751; HO4L 25/52 (2019.01)
CPC - HO4L 45/28; HO4L 45/50; HOAL 47/70; HO4L 47/122; HO4L 47/746

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

See Search History document

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

[0041], [0042]

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2011/0026403 A1 (Shao et al.) 03 February 2011 (03.02.2011), entire document, especially {1-3, 5-7, 10-12, 14-16
- para. [0005], [0040]-[0043), (0048), [0066]

Y 4,8,9, 13, 17-20
Y US 2011/0142051 A1 (Bhatt et al.) 16 June 2011 (16.06.2011), entire document, especially 4,13, 20

para. [0069], [0071), [0179]
Y US 2015/0237013 A1 (NICIRA INC) 20 August 2015 (20.08.2015), entire document [0035], 8,9, 17-20

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“D” document cited by the applicant in the international application

“E” earlier application or patent but published on or afier the international
filing date

“L” document which may throw doubts on priority claim(s) or which
is cited to establish t gdaubhcatlon date of another citation or other
special reason (as specified)

“0” documentreferring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y" document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

13 November 2019

Date of mailing of the international search report

26 DEC 2019

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Lee Young

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)

