
Staying Alive:
Connection Path Reselection at the Edge

Raul Landa, Lorenzo Saino, Lennert Buytenhek and João Taveira Araújo
Fastly

Abstract
Internet path failure recovery relies on routing protocols, such
as BGP. However, routing can take minutes to detect fail-
ures and reconverge; in some cases, like partial failures or
severe performance degradation, it may never intervene. For
large scale network outages, such as those caused by route
leaks, bypassing the affected party completely may be the
only effective solution.

This paper presents Connection Path Reselection (CPR),
a novel system that operates on edge networks such as Con-
tent Delivery Networks and edge peering facilities [52, 64]
and augments TCP to deliver transparent, scalable, multipath-
aware end-to-end path failure recovery.

The key intuition behind it is that edge networks need not
rely on BGP to learn of path impairments: they can infer
the status of a path by monitoring transport-layer forward
progress, and then reroute stalled flows onto healthy paths.
Unlike routing protocols such as BGP, CPR operates at the
timescale of round-trip times, providing connection recovery
in seconds rather than minutes. By delegating routing respon-
sibilities to the edge hosts themselves, CPR achieves per-
connection re-routing protection for all destination prefixes
without incurring additional costs reconstructing transport
protocol state within the network. Unlike previous multipath-
aware transport protocols, CPR is unilaterally deployable and
has been running in production at a large edge network for
over two years.

1 Introduction

Survivability is a core design tenet of the Internet, and a key
factor in its enduring success. In reviewing the formative
years of the DARPA Internet Protocols, Clark [19] listed sur-
vivability second in importance only to the top level goal of
interconnecting existing networks:

It was an assumption in this architecture that syn-
chronization would never be lost unless there was
no physical path over which any sort of communi-

cation could be achieved. In other words, at the top
of transport, there is only one failure, and it is total
partition. The architecture was to mask completely
any transient failure.

The Internet today falls short of this assumption. Failures
are not only common on the Internet, they are often visi-
ble [25,28,29], sometimes spectacularly so [39,41,42,53,54].
While large outages are rare, transient reachability fluctua-
tions, colloquially referred to as internet weather, are fre-
quent [25]. Attempting to prevent all sources of outages is an
exercise in futility: failures are endemic to every component
at every layer along every path on the Internet, and subsets
of components interact to form complex failure conditions
which cannot be anticipated. Instead, the most cost-effective
way of improving reliability on the Internet is to circumvent
failures when they occur. Traditionally, this task has fallen
upon network providers, who rely on routing protocols such
as the Border Gateway Protocol (BGP) and Open Shortest
Path First (OSPF) to route around failures. Routing alone,
however, is not enough.

Firstly, since the successful delivery of keepalive messages
does not imply the successful delivery of client traffic, routing
protocols can only detect a subset of failure conditions. For
example, a BGP session may be hashed onto a healthy Link
Aggregation Group (LAG) member, while other links in the
same group falter. Misconfigurations, such as those that result
in route leaks, can impact large swathes of the Internet [26,35,
41, 53]. Such events, undetected by routing protocols, often
require manual intervention to mitigate at significant cost to
the stakeholders involved.

Secondly, the time required by routing to re-establish a
consistent state after a failure increases with the size of the
network and can take minutes [37], during which loops and
blackholes can occur [28, 29]. Even detection itself can be
slow. The recommended value for the BGP hold timer (the
time after which a non-responsive BGP peer is marked as
failed) is 90s [33, 48], but many implementations set the de-
fault value as high as 180s [4, 5, 11, 18] or even 240s [23].
Even with sophisticated monitoring infrastructure [17,32,51],

transient performance degradations have often disappeared
by the time corrective updates can fully propagate.

Rather than relying on routing reconfiguration, protocols
such as SCTP [55] and MPTCP [24] propose pushing the
responsibility for mitigating path failures to the transport
layer. Unfortunately, multipath transport protocols have strug-
gled with adoption, and are today still circumscribed to niche
use cases. Although multipath-aware protocols provide com-
pelling reliability improvements, the current Internet archi-
tecture provides limited means (and incentives) for network
providers to push multipath options out towards clients. With
deployments limited to subsets of traffic or client popula-
tion [16, 36, 46], their promise remains largely unfulfilled.

Edge networks [51, 52, 64] provide a natural vantage point
from which to improve reliability, acting as a critical interme-
diary between application/content providers, hosted on highly
centralized cloud infrastructure, and a globally distributed
set of clients. By providing caching, security and compute
functions as close to clients as possible, edge networks have
positioned themselves to carry most of the customer facing
traffic on the Internet [51, 52, 64]. Further, because they are
expected to commit to SLAs guaranteeing the successful pro-
cessing of end user requests, they end up bearing the costs
of network layer failures and have a tremendous economic
incentive to improve reliability. Conveniently, they also have
the means. Unlike access/transit providers, edge networks
have end-to-end visibility of traffic, and can therefore detect
and react to failures faster and at finer granularity. By design,
edge networks are multihomed and have access to better path
diversity than end clients.

This paper presents Connection Path Reselection (CPR), a
software-based approach improving the end-to-end reliability
of edge network traffic. The key intuition behind it is that
edge networks do not need to rely on BGP to learn of path
degradation: they can infer the status of a path by monitor-
ing transport-layer forward progress, and then reroute stalled
flows onto healthy paths. This not only improves connection
recovery, but also allows traffic to be shifted on a per-flow ba-
sis, greatly reducing the likelihood of load-induced cascading
failures. Unlike previous proposals, CPR is unilaterally de-
ployable, applicable to all flows, and simple to configure. Its
implementation is entirely contained in a server-side kernel
patch; it does not require programmable switches or any extra
infrastructure. CPR has been in production for over two years
at Fastly, a multi-Tbps edge cloud provider, where it success-
fully mitigates ∼120 degradation events every day, each ∼8
minutes long (over ∼16 hours per day).

Having described our motivation, the remainder of this pa-
per is organized as follows. First, we discuss the background
of this work (§2), explain first how CPR detects path im-
pairments (§3) and reroutes traffic as a result (§4). We then
share results from production measurements (§5), followed
by some operational considerations (§6). Finally, we compare
CPR with related work (§7) and present our conclusions (§8).

2 Background and motivation

Edge networks (as understood in e.g., [52, 64]) have unique
characteristics that must be considered when designing a
mechanism to improve end-to-end customer traffic reliability.

Edge networks support a diverse and changing set of
applications. Early edge networks such as Content Delivery
Networks (CDNs) were designed to support a narrow segment
of Internet traffic: large, static content that could benefit from
caching. This narrow traffic profile allowed for a wide set of
potential optimizations. Edge networks have since evolved
to support a much wider set of use cases (security, edge com-
pute) and applications which no longer fit a neat traffic profile:
a video client may need to retrieve small manifest files before
requesting video chunks, or a browser session may download
cached assets while maintaining a long-polling connection
over which it receives update notifications. As such, edge
networks today represent a microcosm of Internet traffic, not
a segment. While it may be tempting to focus our efforts
on improving reliability for a subset of traffic, performance
degradation on any flow can adversely impact an entire ap-
plication. A further complication is that it is not always a
given that end clients will retry. For example, packaging a
container image can involve retrieving potentially hundreds
of individual assets. Failure to acquire any single one of these
assets can result in the entire build process failing, at which
point a user must decide whether to retry. This implies that we
must detect any potential source of failure, for every type of
flow, independently of its source, length, or capabilities of the
end-client. We must also take into account that most traffic
towards end-users will likely flow through middleboxes.

Edge networks are constrained by physical capacity.
Points of Presence (POPs) are limited by physical space, and
are designed to maximize the number of requests per second
(RPS) they can serve [59]. Peak RPS is primarily dictated by
storage and compute capacity - not bandwidth. Unlike tradi-
tional cloud environments, we cannot increase the physical
footprint of network hardware, since that would necessarily
reduce the amount of hardware dedicated to serving requests.
Given our motivation for improving reliability is to reduce
costs, we can not do so at the expense of efficiency.

Edge networks have unpredictable traffic patterns.
Edge networks are subject to sudden fluctuations in demand
due to flashcrowds or DDoS attacks. While physical capacity
at any given POP is fixed, operators can shift traffic between
POPs by adjusting DNS and BGP anycast configurations. This
traffic engineering wreaks havoc on any potential solution that
acts only on a set of heavy-hitter prefixes which is periodi-
cally updated. For instance, a POP located in Los Angeles
may only observe traffic from prefixes in southern California
in normal conditions, but this can change abruptly if e.g., a
POP in San Jose undergoes maintenance, or if a DDoS at-
tack targets POPs in Japan. Traffic patterns shift dramatically
during significant congestion and routing events, which is

precisely when reliability suffers the most. Our design takes
these constraints into account, and presents a system which
strives to:

• detect and react to failures affecting any flow, at any
point in its lifetime;

• minimize operational and infrastructure costs;
• interact safely with concurrent traffic engineering and

routing processes.
Such a system is possible because edge networks support

routing architectures which expose multipath capability to
end servers [57,64]. By maintaining multiple routing tables in
the kernel and allowing transport sockets and userspace appli-
cations to select which one to use on a per-packet basis, edge
servers can override standard BGP route selection and instead
implement objective-driven routing policy by themselves.

The benefits of path diversity have been amply studied
(e.g., [21,60]), in particular for stub networks [27]; even when
performance gains are not forthcoming, cost benefits can be
achieved [6]. Previous work on path-switching revealed that
it is possible to improve average path loss performance by
an order of magnitude on average by dynamically switching
paths [56]. Previous work on CDN multihoming demonstrated
25% performance improvement for 3 out of 4 metro areas
simply by selecting the best of two transit providers, with
comparable reliability improvement [7]. One specific type
of simple path diversity is highly prevalent: path load bal-
ancing. 72% of source-destination network pairs explored
in [12, 13] show evidence of load balancing; for ∼12% of
these, load balanced paths are asymmetric and explicit selec-
tion can significantly improve end-to-end latency. A more
recent study [47] showed even more significant benefits: not
only do paths from large cloud providers show latency differ-
ences between load-balanced paths exceeding 20ms to 21%
of public IPv4 addresses; 8 pairs of datacenters were found
to have latency differences between load-balanced paths ex-
ceeding 40ms. Path diversity is high for edge networks: in the
CPR deployment presented here each POP typically connects
to a few transit providers and several peers1.

This is the starting point for Connection Path Reselection
(CPR). Given the multipath capabilities of edge servers, how
can we extend TCP to circumvent failures? Focusing on TCP
is appealing not only because its congestion control and loss
recovery mechanisms are sufficient on their own for a large
class of end-to-end impairments, but also because any auto-
mated, short-timescale re-routing of large volumes of traffic
can override traffic engineering and create undesirable traffic
distributions. By performing path selection decisions at the
connection (rather than the route/prefix) level, CPR minimizes
its impact on traffic volumes.

CPR is embedded within TCP and implemented as a server-
side patch to the Linux kernel, and relies on extensions to
the tcp_sock struct to keep essential re-route-related state.

1See §5.3 and appendix A.1 for further details.

Because the kernel itself abstracts the IP address version at
the socket level, CPR naturally covers both IPv4 and IPv6
traffic. Since CPR is parsimonious with both its execution
and instrumentation state, it remains scalable even under ex-
treme situations such as flashcrowds or DDoS attacks. The
operation of CPR can be decomposed into two independent
sub-problems: how to detect genuine path failures through
impairment detection, and how to circumvent an impaired
route through path reselection. We will tackle each of these
problems in turn.

3 Impairment detection

The main task of CPR’s impairment detection algorithms is to
accurately identify path failures based on transport layer per-
formance in a timely manner. A key challenge is to distinguish
between spurious packet loss, which should be recoverable
with retransmission over the same path, and persistent fail-
ures, which are better addressed by selecting a different one.
From a transport layer perspective, connections routed over
an impaired path experience stalls, i.e., fail to make forward
progress for some amount of time in spite of retransmissions.
CPR works by detecting stalls and using them as a signal
to select an alternate path, with the objective of eventually
resuming forward progress.

Two different impairment detection mechanisms are nec-
essary, each addressing complementary stages in the TCP
connection lifecycle. The first (§3.1) deals with path impair-
ments before connection establishment; the second (§3.2)
deals with impairments arising after connections have suc-
cessfully established.

3.1 Pre-establishment impairments
A TCP connection is initiated by a client transmitting a SYN
packet to commence a three-way handshake, to which the
server will reply with a SYN-ACK. If the server’s outbound
path has failed before a connection is established, the SYN-
ACK transmitted by the server will be lost. The client then re-
transmits the SYN after a predefined interval (1s on Linux [3]),
to which the server will reply again with a SYN-ACK that
will also be lost. This retry behavior continues until the path
becomes available again or the client stops retrying (a Linux
client retries 6 times by default). In such cases (fig. 1a) CPR
will declare a stall upon exceeding the threshold of n pre-
sumed lost SYN-ACKs. Upon detecting a stall, route rese-
lection is triggered on every subsequent SYN-ACK retrans-
mission until the connection is successfully established or the
client times out.

This detection mechanism is quite coarse because its ability
to detect a failure is limited by the frequency of SYN retrans-
missions at the client. The precision and speed of failure
detection could be improved if the server proactively retrans-
mitted SYN-ACKs at a higher frequency without waiting for

SYN

server client

ACK

SYN

SYN

SYN ACK

reroute

SYN ACK

SYN ACK
 Lost at least
n SYN-ACKs?

(a) Inbound pre-establish

client server

ACK

SYN

reroute

SYN

SYN

Lost at least
n SYNs?

SYN ACK

(b) Outbound pre-establish

server client

reroute

 last forward progress

retransmission

 Exceeds δ?

(c) Established

Figure 1: Impairment detection and reroute

SYN retransmissions from the client. This would however
create an amplification vector that could be exploited by SYN
flood attacks and therefore would not be safe to deploy in
untrusted environments.

CPR’s pre-establishment impairment detection algorithm
cannot be used when SYN cookies are enabled, because then
the kernel will not keep any state for incoming pre-establish
connections. This is a desirable feature. By default, the Linux
kernel sends SYN cookies upon listen queue overflow, which
is typically triggered by SYN floods. This will result in SYN-
ACK stall detection being disabled during an attack, and SYN-
ACKs using the preferred path.

Finally, we note that the same mechanism could be applied
to connections initiated by edge servers (see fig. 1b), whereby
we reroute after a given number of lost SYN packets rather
than SYN-ACK packets. This case is less relevant in practice
however, since most edge server traffic results from inbound
connection requests.

3.2 Post-establishment impairments
For established connections (see fig. 1c) CPR verifies, before
a retransmission, whether the connection has failed to make
forward progress for a time threshold δ. If so, it declares a
stall and selects a new egress path. CPR marks a connection
as making forward progress whenever an (S)ACK is received
for data that has been sent, but not yet acknowledged. This
requires storing a timestamp variable in each TCP socket to
keep track of forward progress. The algorithm operates as
follows:

• clear the timestamp as long as there are no outbound
segments in flight, and set it to the current time when
the segment that is at the front of the transmit queue is
transmitted for the first time;

• update the timestamp to the current time whenever the
connection makes forward progress, i.e., receives an
(S)ACK that acknowledges data byte ranges previously
transmitted but not yet acknowledged;

• clear the timestamp when the last outstanding byte range
has been fully acknowledged;

• declare a stall when (re)transmitting a TCP segment if

1) the timestamp is set, and 2) the time elapsed since the
timestamp exceeds a threshold δ.

Because this algorithm declares stalls on retransmission,
connections that become idle whilst using paths that subse-
quently fail cannot declare a stall until their first retransmis-
sion. This behavior minimizes spurious path reselection.

Algorithm parameters. As with n, setting an appropriate
value of δ needs to strike an appropriate tradeoff between re-
activity and accuracy. The key challenge is to ensure that the
threshold works consistently well across connections, regard-
less of their RTT. Setting δ to a fixed, global value would lead
to either spurious stalls for high RTT connections, or sluggish
response for low RTT connections. This can be addressed
by defining δ in terms of path properties already estimated
by TCP. We could, for instance, define δ as a multiple µrto
of the connection retransmission timeout (RTO) Trto, so that
δ = µrtoTrto. As usual, Trto = srtt+4×rttvar, where srtt
is the smoothed round-trip time and rttvar is the round-trip
time variance [50]. Unfortunately, this solution on its own
could be problematic for connections with very low srtt and
rttvar, because, given a low value of δ, temporary router
queue build-ups and subsequent increased latency may be
misidentified as stalls and trigger spurious reroutes. We guard
against this issue by defining δmin, a lower bound for δ, and
setting δ = max(δmin,µrtoTrto).

Using a small value for µrto (e.g., µrto = 1) may spuriously
trigger reroutes during the slow start phase of the connection.
For paths with moderate background packet loss, RTO ex-
piration is more likely to happen when there are few TCP
segments in flight, e.g., during slow start: once the connection
has filled its bandwidth-delay product, a constant stream of
incoming ACKs makes the triggering of RTOs less likely.

Rate limiting reroutes. Re-routing onto a new path does
not necessarily result in recovery: the new egress path could
share a failure with the original one, or the impairment re-
sponsible for the stalling could be on the inbound path. When
this occurs, CPR will simply continue to probe paths until
forward progress is made. If the reroute threshold δ of the
connection is low, the connection may end up being rerouted
multiple times in rapid succession. This could result in CPR
not being able to gather enough data about the state of a new

path to make an accurate decision about its suitability before
trying yet another path. We addressed this by implementing a
rate limiting over periods of length wait, so that connections
will not be re-routed more than once in every period.

Triggering stall detection logic. Since CPR performs stall
detection on retransmission with a timeout expressed as a
multiple of the RTO, it is natural to ask whether stall detection
logic could be co-located with the RTO triggering logic of
the TCP state machine. The answer is negative, because not
all retransmissions relevant to connection forward progress
are triggered by RTO expiration. Consider the case where the
outbound path used by a connection has failed and both the
local and the remote ends have outstanding (unacknowledged)
data. It is possible for retransmissions by the local end to keep
being triggered by the reception of retransmissions from the
remote end, before a local RTO can elapse. For this reason,
stall detection logic reuses the RTO value, but is evaluated
independently of RTO logic at relevant points in the TCP state
machine (e.g., when sending retransmissions).

4 Path reselection

control plane

data plane

switchesserver

routing daemon

main MPLS lookup table

peers

routing daemon

transits

BGP
BGP

BGP

BGP

Figure 2: Routing architecture

CPR leverages a routing architecture similar to Espresso
[64] and Silverton [14, 57] which push visibility of all avail-
able routes down to edge hosts. In this architecture (depicted
in fig. 2) each host is connected to a number of switches,
which are in turn connected to a number of upstream providers.
These include both transit providers and settlement-free peers,
connected directly through Private Network Interconnects
(PNI) or Internet Exchange Points (IXP).

Each switch performs two tasks. First, an MPLS label is
configured for each upstream provider, and a corresponding
nexthop entry is inserted into the local routing table. Second,
BGP route updates received from upstream providers are
tagged with the associated MPLS label, and forwarded to
routing daemons on the host. The routing daemon on end
hosts populates two routing tables:

• The main table contains all policy-preferred routes
among those learned from all peers, and is used for rout-
ing traffic under normal circumstances i.e., when path
reselection has not been requested. It contains routes pre-
ferred under performance, capacity and cost constraints.

• The transits table is populated with all default routes
(i.e., 0.0.0.0/0 or ::/0) learned from upstream providers.
Since settlement-free peers do not provide universal

reachability (i.e., export a full routing table), only de-
fault routes provided by transit providers are included.

Given the routing architecture in fig. 2, and having access
to the main and transits table, the next objective of CPR is to
provide a mechanism to allow the stall detection algorithms
in §3 to select a new path for a stalled connection. We achieve
this by associating a reroute counter r with each connection,
and incrementing it every time a stall is declared for that con-
nection. This counter is stored in the 4 most significant bits of
the firewall mark (fwmark) of a connection, a 32 bit value that
can be used to tag packets traversing the Linux network stack
and make routing decisions about them. To make rerouting
based on r possible, we made two relevant changes. First, we
changed the Equal Cost Multipath (ECMP) hashing function
used by the Linux kernel. The standard Linux implementation
of ECMP selects a nexthop by hashing the connection 5-tuple
(i.e., source and destination IP addresses, source and desti-
nation ports and protocol number). CPR includes the value
of the reroute counter r into the hash computation. Second,
we configure an ip rule to ensure that, for any connection for
which r > 0, a next hop is looked up from the transits table
rather than from the main table. Hence, we use r as a flag
that triggers CPR-specific routing for connections that have
suffered stalls. The combined effect of these two changes is
that simply incrementing the reroute counter will force a new
route lookup.

‣ proto: tcp
‣ local: 124.12.34.2:443
‣ remote: 1.0.2.3:13874 transits

prefix label

1.0.0.0/24 A
1.0.1.0/24 C
1.0.2.0/24 B

223.255.255.0/24 A

main

prefix label

default A
default B
default C
default D

r = 0

r > 0

r = 0

r = 1

r = 2

connection

r = 3

… …

Figure 3: Path reselection upon stall detection
As an illustration, consider a hypothetical connection that

has not yet experienced a stall, as shown in fig. 3. At this
point in its lifetime, r = 0, route lookups are performed us-
ing the main table, and the BGP-defined egress path is used.
When the stall detection algorithm (§3.2) declares a stall, it
increments r. From that point on, since r > 0, route lookups
are performed using the transits table, and the next hop for
IP packets forming this connection is pseudorandomly se-
lected among all the nexthops of the default route present in
the transits table according to ECMP(5-tuple, r). Since each
increment of r forces a new route lookup, as r increases the
stalled connection will follow a unique, pseudorandom se-
quence of egress paths which will depend on both its 5-tuple

and the ECMP hash used. The aggregate effect of this pro-
cess is that rerouted connections are homogeneously “load
balanced” among all available egress paths.

We now show that CPR should be able to resolve recov-
erable stalls with relatively few retries. If np is the number
of egress paths available, of which ns lead to stalled connec-
tions, each path reselection is a Bernoulli trial with a success
probability p =

np−ns
np

. The number of re-routes k required
until recovery will be geometrically distributed [2] so that
P(X ≤ k) = 1−(1− p)k. Hence, the expected maximum num-
ber of re-routes that will be required to find a good path with
a given probability β is k∗ = log(1−β)

log(1−p) . Even a conservative2

p = 50% and β = 95% results in only k∗ ≈ 4 re-routes.
We note that, although fig. 2 states that the main table

should contain a full routing table, CPR does not require this
to be the case. As noted above, path reselection only relies on
the transits table. Further, although our implementation uses
MPLS to steer specific flows towards a given provider, this
can also be done using GRE tunneling [64] or DSCP marking
[52]. Routes can be pushed down to the host using BGP add-
path [62] or proprietary mechanisms. Our architecture is just
one of many that could support CPR deployment; the basic
primitives of CPR are applicable to many scenarios.

5 Evaluation

This section evaluates the performance of CPR in a large
edge cloud production deployment with daily traffic peaks on
the order of tens of Tbps. All results were collected through
passive measurements of production traffic.

5.1 Parameter tuning

Tuning CPR involves resolving a tradeoff: whereas unneces-
sarily rerouting connections could place them on paths with
potentially lower performance and higher cost, failing to react
to a recoverable path impairment increases its potential to
harm client connections. This section discusses how we tuned
the CPR parameters (§3) to resolve this tradeoff between
accuracy and reactivity.

Tuning pre-establishment impairment detection. The
only parameter involved in detecting impairments prior to
connection establishment is n, the number of presumed lost
SYN-ACKs after which a reroute is executed (§3.1). Hence,
at this stage tuning involves determining the value of n af-
ter which timely connection establishment becomes unlikely
without CPR intervention.

We proceeded by instrumenting servers in three distinct
geographical regions (North America, Europe and Asia) with
CPR disabled. We then measured how many SYN retrans-
missions occurred for all connections that were eventually

2See §5.3 and appendix A.1 for further details.

n APAC EU NA

0 .63 .64 .70
1 .13 .17 .28
2 .05 .09 .12
3 .03 .06 .08
4 .01 .05 .05
5 .01 .03 .03

Table 1: Proportion of
connections not establish-
ing after n consecutive
SYNACK losses (%)

Stall
duration

lower
bound

APAC EU NA

RTO 1.79 .57 2.18
2s .34 .36 .10
3s .23 .24 .06

Table 2: Proportion of connections
experiencing at least one stall dur-
ing their lifetime, as a function of
the stall duration (%)

established3. As shown in table 1, only ∼0.63% to ∼0.7%
of connections experience impairments before establishing,
depending on the region. This means that more than ∼99.3%
of connections establish without any retransmissions. Fur-
ther retransmissions help connection establishment, but with
noticeable diminishing returns. For example, after two con-
secutive retransmissions without a reroute, the probability
of a connection being successfully established was between
∼0.05% to ∼0.12%. Based on these findings, we set n = 2 in
our production configuration.

Tuning post-establishment impairment detection. We
addressed the tuning of δmin and µrto (§3.2) in two steps.
First, we followed a similar measurement methodology as
that used to tune n, this time focusing on connections expe-
riencing at least one RTO expiration during their lifetime.
Our results, reported in table 2, provide evidence of signifi-
cant regional variability. Whereas ∼0.1% of connections in
North America experience stalls lasting for 2 seconds or more,
this increases to ∼0.35% for connections in Europe or Asia-
Pacific4. However, these results also show that the probability
that a connection recovers after experiencing a stall for 2 or 3
seconds was very low irrespective of geographical region.

0 2 4 6
Stall duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F NA

EU
AP

< 300ms
300 - 400ms
400 - 500ms
> 500ms

< 300ms
300 - 400ms
400 - 500ms
> 500ms

(a)

0 5 10 15 20
Stall duration (RTO multiples)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F NA

EU
AP

< 300ms
300 - 400ms
400 - 500ms
> 500ms

< 300ms
300 - 400ms
400 - 500ms
> 500ms

(b)

Figure 4: Duration of TCP stalls by region and RTO
3This was done during a period free of obvious biases such as outages,

high-load client events, DDoS attacks, etc.
4These values constitute a lower bound; during the active phase of an

impairment event the proportion of affected connections can rise by an order
of magnitude or more (see §5.2).

The next step was to investigate the time required for a
connection to resume forward progress after an RTO (fig. 4).
We begin by noting the two vertical lines in fig. 4a: these
correspond to the two candidates found in the previous study.
For connections with RTO ≤ 500ms, most of the probability
mass in the dataset lies to the left of the first line, providing
evidence that for these connections the length of a stall is
largely independent of RTO and δmin = 2s is sufficient to
ensure adequate impairment detection.

To understand how best to handle connections with RTO >
500ms, we first note the probability mass “bumps” in fig. 4b.
These intervals of 3, 7 and 15 RTOs stem from TCP retrans-
mission behavior under exponential backoff. Since the ma-
jority of the probability mass lies to the left of the first line,
a large proportion of connections will recover on their own
before µrto = 3, irrespective of their RTO. This addresses
the high RTO connections that were not already covered by
δmin = 2s, and provides a rationale to set µrto = 3.

Finally, we set wait (§3.2) by observing day-to-day oper-
ation of the system in production. We select wait = 1s sec
on the basis of keeping the volume of steady-state rerouted
traffic to a sufficiently low level.

5.2 Evaluating benefit and non-harm
Methodology. To ascertain the impact that CPR has on on-
going connections we follow an experimental approach, in
which we (pseudo)randomly label some connections as part
of a treatment group, and the remainder as part of a control
group for which path reselection logic is disabled. While the
state and output of the impairment detection algorithms are
maintained for both groups, network-layer path changes are
triggered only for treatment connections. This setup allows
us to explore the degree to which the benefits of CPR during
path outages outweigh its potential costs when no impair-
ments are present. We begin by exploring whether rerouting
a stalled connection could make its performance significantly
worse than doing nothing. To the extent that the answer to this
question is negative, CPR will be innocuous when triggering
due to stalls not associated with path impairments, and hence,
non-recoverable by rerouting. We then move on to analyze the
benefits that CPR provides during path impairment episodes.

Evaluating non-harm in the steady state. For both treat-
ment and control we quantify the reroute effect on connection
properties such as RTT or retransmission rate. Since connec-
tion properties need time to settle to their new values after
a reroute in order to be meaningful, we focus on long-lived
connections. We define the onset of a stall as the TCP sending
event immediately prior to an RTO, and the full resolution as
the first sending event after forward progress is restored and
305 segments have been sent. We define the reroute effect on
a connection property as the difference between its value at

5This number was arbitrarily selected to provide enough samples for TCP
connection properties to stabilize.

20 10 0 10 20
RTX rate diff (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

IPv4
IPv6

Control
Treatment
Control
Treatment

(a)

20 40
Recovery time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F IPv4

IPv6

Control
Treatment
Control
Treatment

(b)

100 50 0 50 100
SRTT diff (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

IPv4
IPv6

Control
Treatment
Control
Treatment

(c)

Figure 5: Steady-state reroute effect experiment results

onset and at full resolution.
The CDF of the reroute effect on the TCP retransmission

rate6 is presented in fig. 5a. Whereas it seems to be negligible
for IPv6, for IPv4 the treatment connections have a greater
proportion of their probability mass on the negative effect
sizes, implying that rerouted IPv4 connections tend to have
lower retransmission rates after the reroute than before it.
This points towards CPR having some small benefit during
the measurement period. Otherwise, the curves are very close
to one another, providing evidence that CPR is not introducing
significant retransmissions during steady state.

We can also use the results of the previously described
reroute effects experiment to understand the effect of CPR on
stall recovery speed. From fig. 5b we can see that treatment
connections tend to have shorter resolution times compared
to control connections, both for IPv4 and IPv6. The effect
during steady state is small, as expected: ∼80% of control
connections recover within 20s of a reroute, compared to
∼85% of treatment connections.

Finally, fig. 5c shows the effect of reroutes on srtt (§3.2).
Again, a seemingly negligible effect for IPv6 is accompanied
by a clear effect for IPv4, this time demonstrating higher srtt
values after the reroute (usually by less than ∼30 ms, but
sometimes more than ∼100 ms). This performance penalty is
expected since our BGP traffic engineering policy optimizes
for latency, and is more finely tuned in IPv4 than in IPv6
due to operational maturity. Since CPR explicitly reroutes
away from paths selected by this policy, we are more likely
to experience an increase in RTT than not. In this light, our
configuration of CPR is an expression of the extent we are
willing to subvert local routing policy in an attempt to recover
from failure. Since this is a matter of policy, we observe there
is no single correct configuration, but a range of potentially
acceptable outcomes.

Evaluating benefit during stall events. During path im-
pairments, the most common outcome for control connections
is failure (rather than e.g., increased RTT or retransmission

6Every connection in this dataset experienced a stall during the measure-
ment period. Hence, retransmission rates are expected to be higher than the
blended averages typically reported.

(i)
H

ig
h

B
G

P
af

fin
ity

0.0

0.2

0.4

0.6

0.8

1.0

03
:12

03
:14

03
:16

03
:18

03
:20

03
:22

03
:24

Time [UTC]

0.86

0.88

0.90

0.92

0.0% 1.0% 2.0% 3.0%

0.0

0.2

0.4

0.6

0.8

1.0

03
:12

03
:14

03
:16

03
:18

03
:20

03
:22

03
:24

Time [UTC]

0.6

0.8

0.0% 2.5% 5.0% 7.5%

0.0

0.2

0.4

0.6

0.8

1.0

03
:12

03
:14

03
:16

03
:18

03
:20

03
:22

03
:24

Time [UTC]

0.70

0.75

0.80

0.85

0.90

2.0% 0.0% 2.0% 4.0%
03

:14
03

:16
03

:18
03

:20
03

:22
03

:24

Time [UTC]

(ii
)L

ow
B

G
P

af
fin

ity

0.0

0.2

0.4

0.6

0.8

1.0

07
:10

07
:12

07
:14

07
:16

07
:18

07
:20

07
:22

07
:24

07
:26

Time [UTC]

0.90

0.92

0.94

0.0% 0.5% 1.0% 1.5% 2.0%

(a) π•(HEALTHY)

0.0

0.2

0.4

0.6

0.8

1.0

07
:10

07
:12

07
:14

07
:16

07
:18

07
:20

07
:22

07
:24

07
:26

Time [UTC]

0.75

0.80

0.85

0.90

0.95

0.0% 1.0% 2.0% 3.0%

(b) po
•(HEALTHY|SYNRCVD)

0.0

0.2

0.4

0.6

0.8

1.0

07
:10

07
:12

07
:14

07
:16

07
:18

07
:20

07
:22

07
:24

07
:26

Time [UTC]

0.85

0.90

0.95

0.0% 1.0% 2.0%

(c) pi
•(CLOSE|HEALTHY)

07
:05

07
:10

07
:15

07
:20

07
:25

07
:30

Time [UTC]

(d) BGP events

Figure 6: CPR operation during two stall events (i and ii). The timeseries plots in figs. 6a to 6c show the control • (dashed) and
treatment • (solid) group values (left y-axis). Each one of the thin lines corresponds to a single host; thick lines track the average
for all hosts in a POP. In the same plot we also show the proportion of hosts in a POP for which the timestamp has been classified
as part of an active event � or its context � (right y-axis). Beneath each timeseries plot we show a violin plot for the PDF of
∆π (fig. 6a) or ∆p• (figs. 6b and 6c), the difference between treatment and control values, for both context • (top) and event •
(bottom) periods. Each subplot in fig. 6d shows BGP update/withdrawal rates for peering sessions which triggered anomaly
detection in proximity to the active event span. Since only relative changes are relevant, y-axis tickmarks have been removed.

rates). Hence, to accurately assess the benefits of CPR we
must look beyond the reroute effect measures presented above.
Broadly, we resort to anomaly detection on the performance
differences between treatment and control groups in order to
identify stall events. The benefit of CPR for a given stall event
can then be measured by comparing treatment and control per-
formance differences during the event, with the correspond-
ing performance differences during the immediately adjacent
timespans. We refer to the union of timespans immediately
preceding and following a stall event as its context.

In order to identify stall events, we instrumented the kernel
to export additional metrics. First, we store per-connection
information on the operation of the recovery mechanism as
part of the socket metadata; this includes the reroute counter r,
last forward progress timestamp, etc. Second, we maintain ag-
gregate counters in the kernel which track state transitions as
each connection traverses both TCP and CPR state machines.
Each edge server aggregates separate counters for treatment
and control group connections, allowing us to estimate the ef-
ficacy of CPR on each host according to multiple performance
measures7, including:

• π•(HEALTHY), the proportion of TCP connections in the
HEALTHY state;

• po
•(HEALTHY|SYNRCVD), the proportion of TCP connec-

tions that transition out from the SYNRCVD state towards

7A more detailed overview of stall event detection is included in appen-
dices B and C.

the HEALTHY state, per unit time. This gives an indication
of the instantaneous probability of connections connect-
ing successfully; and

• pi
•(CLOSE|HEALTHY), the proportion of TCP connec-

tions that transition into the CLOSE state from the
HEALTHY state, per unit time. This gives an indication
of the instantaneous probability of connections closing
while healthy (rather than stalled).

We present two CPR stall events in fig. 6, embedded in their
context so that their impact is clearly visible. Each event is pre-
sented along its BGP affinity score, a synthetic measure of the
degree to which observed routing plane events are correlated
with transport layer anomalies (appendix C). Our examples
were selected to juxtapose the case where there is a high BGP
affinity score (i), and therefore an association between CPR
and BGP behavior, and a low BGP affinity score (ii). In both
cases we can observe that immediately after the start of the
stall event (at the left context/event boundary) CPR treatment
connections start experiencing better performance, as inferred
from a higher π•(HEALTHY) (fig. 6a). Treatment connections
also have better chances of establishing (fig. 6b), evidencing
connection setup distress for control connections, and exhibit
a greater chance of closing while HEALTHY, rather than when
STALLED (fig. 6c). When taken together, these facts point
towards a small but significant proportion of affected connec-
tions, both established and pre-establish, clearly benefiting
from CPR, irrespective of the BGP affinity of the event. When
a clear association with BGP is present, such as with fig. 6d (i),

the benefits provided by CPR are materialized significantly be-
fore the associated BGP event is resolved. Conversely, fig. 6d
(ii) demonstrates that CPR can recover just as effectively in
cases for which BGP provides no remediation.

Each violin plot beneath a CPR time series event subplot
in figs. 6a to 6c shows the benefit that CPR provided to con-
nections assigned to the treatment group during the event.
For state occupancies we rely on ∆π = πt − πc, the differ-
ence between treatment and control values (similarly, for state
transitions ∆p• = p•t − p•c). For instance, in fig. 6a we can
see that although the distribution of ∆π(HEALTHY) was cen-
tered at zero outside the event period, it moved to the right
during the active phase of the event, irrespective of BGP affin-
ity. For (i) we see that CPR allowed an additional ∼3% of
connections (over the entire POP and to all destinations) to re-
main in the HEALTHY state compared with the control group;
for (ii) this is reduced to ∼1.4%. On the other hand, from
∆po(HEALTHY|SYNRCVD) (fig. 6b) we see that during (i) CPR
allowed an additional ∼7% of connections in the POP moving
out from a SYNRCVD state to enter the HEALTHY state; during
(ii) this is reduced to ∼1%.

Evaluating benefit globally. Having explained the typical
characteristics of stall events using individual examples, we
now focus on 1) measuring CPR effectiveness at a global
scale, and b) identifying the circumstances under which CPR
is most effective. To this end we perform statistical aggrega-
tion on data collected from ∼80 POPs over ∼12 months. As
before, we focus on recovered events, defined as stall events
which show evidence of improvement in performance mea-
sures (e.g., those presented in fig. 6). We do this for two rea-
sons. First, whereas improved treatment group performance
unequivocally points towards TCP stalls that can be resolved
by path reselection, anomalies where CPR provides no benefit
are uninformative: there are many possible causes of TCP
stalls unrelated to resolvable path impairments (e.g., wireless
access roaming or dis-association) for which re-routing cannot
be expected to help. The second reason is implementation-
related. Since performance data such as presented in fig. 6d
is only kept aggregated at host level (rather than at prefix or
connection granularity) it is difficult to directly associate a
CPR event with a set of destination prefixes/ASes, and hence,
to a BGP-based ground truth. For recovered events this is not
an issue: CPR itself provides direct confirmatory evidence of
path impairment mitigation8.

We will denote the daily per-POP average CPR state occu-
pancy during the active phase of stall events (rather that their
context) as E [∆π]. This measure can be used to directly un-
derstand which geographies benefit the most from the deploy-
ment of CPR, as shown in figs. 7a and 7b. First, in fig. 7a we
can see that most of the probability mass forE [∆π(HEALTHY)]
lies on the positive semi-axis regardless of geography, imply-

8Note however that, since our CPR deployment could in principle fail to
recover from some stall events, our reported prevalence findings suffer from
survivorship bias [63] and must be interpreted as lower bounds.

0 1 2 3
difference (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Region
Africa
Asia
Europe
N. America
S. America

(a) E [∆π(HEALTHY)]

1.5 1.0 0.5 0.0
difference (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Region
Africa
Asia
Europe
N. America
S. America

(b) E [∆π(SYNRCVD)]

0 10 20
%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Region
Africa
Asia
Europe
N. America
S. America

(c) E [πt(STALLED)]

5 10 15
events

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Region
Africa
Asia
Europe
N. America
S. America

(d) Count

10 20 30
minutes

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Region
Africa
Asia
Europe
N. America
S. America

(e) Duration

5 10 15 20
severity

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Region
Africa
Asia
Europe
N. America
S. America

(f) Severity Index

Figure 7: Per-day, per-POP recovered events

ing that πt ≥ πc and hence that the proportion of HEALTHY
connections was higher for the treatment than the control
group (median ∈ [0.57%,0.68%]). Conversely, fig. 7b shows
that most of the probability mass for E [∆π(SYNRCVD)] lies
on the negative semi-axis (median ∈ [−0.46%,−0.19%]), so
that πt ≤ πc. This means that CPR allows connections to both
1) connect faster and 2) spend less time stalled. We note that
whereas πt(HEALTHY) benefits are greatest in Europe (median
= 0.68%) and Asia (median = 0.65%), πt(SYNRCVD) benefit
is particularly strong in South America (median =−0.46%)
and Africa (median =−0.38%). However, as shown in fig. 7c,
these benefits are accompanied by a cost: every day more than
∼10% of connections on up to ∼30% of PoPs experience stall
events. Although the immense majority of these stalls are
associated with abandoned connections and hence carry neg-
ligible traffic, we note that non-recoverable stalls induce a
sustained level of background reroutes.

In contrast to figs. 7a to 7c, figs. 7d and 7e show weaker
region dependence. Although fig. 7d provides some evidence
that recovered stall events occur roughly proportionally to
both 1) the aggregate traffic volume and 2) the interconnec-
tion density of a region, the difference between regions is
small. Similarly, fig. 7e shows that most recovered events last
under 20 minutes, irrespective of region (median ∈ [7.1,9.4]).
However, we note that this distribution can be heavy tailed:
we have observed uncommon, longer events that span multi-
ple hours. These can have “macroscopic” effects, triggering
operational responses and re-routing over 20% of PoP traffic.

We finally turn our attention to the severity of recovered
events. We define a heuristic severity index based on the
normalized performance difference between treatment and
control connections during the event and its associated con-
text. The higher the number of standard deviations between

treatment and control variables during the event itself, com-
pared to before and after it, the higher the severity for the
event (see appendix C). Perhaps unsurprisingly, fig. 7f shows
that CPR routinely recovers from higher severity events in
densely connected regions. However, the distinction between
the North and South America curves in figs. 7d and 7f is
instructive. Whereas in fig. 7d the former is always beneath
the latter, in fig. 7f the opposite occurs. This shows that CPR
helps recover from more events in regions with nontrivial
BGP routing where complex business agreements and un-
dersea cable topology can make BGP-only recovery more
challenging.

As a complement to the per-POP statistics presented in
fig. 7, we report that globally CPR mitigates on average ∼120
impairment events every day with a median duration of ∼8
minutes. Informally, this amounts to over ∼16 hours per day.
While this improvement may appear quantitatively modest, in
practice these performance degradations bear a high cost in
the absence of mitigation. Many of them exhibit no proximal
cause, making them notoriously hard to debug. Even when an
underlying cause is understood, many performance problems
are short-lived and will be resolved by the time engineering
or customer support resources have been mobilized to address
them. In opportunistically mitigating either type of deteriora-
tion, CPR has an outsized impact in improving the reliability
of services provided by edge networks, at virtually no cost.

5.3 Path coverage
Given that CPR deflects traffic among upstream providers
when mitigating path impairments, it is informative to es-
timate the degree to which reroutes are likely to result in
disjoint data plane paths. To this end, we analyze all routes
learned from every provider in a given POP. Since all transits
offer full routing tables, every destination prefix will have a
set of available routes. In addition to these routes, we may
have additional peering routes learnt from PNIs or IXPs. One
of these paths (learnt from either peering or transits) will be
selected as an outcome of BGP policy; the remaining routes
(learnt over transits) represent valid alternate paths.

We proceed by defining each AS in the selected path to
be node-protected if there is an alternate path for the same
destination that does not include it. Then, we define AS-node
diversity as the proportion of node-protected ASes in the
selected path. Similarly, we can define an AS pair in the
selected path to be link-protected if there is an alternate path
that does not include the same AS pair in the same order,
which leads to the entirely analogous definition of Inter-AS-
path diversity as the proportion of link-protected AS pairs in
the selected path. Since CPR will eventually explore every
available path to every destination, these two measures can be
used as proxies for the probability of recovery given a failure
event involving any given destination prefix9.

9Two practical qualifications are in order. First, since a packet can traverse

An analysis of ∼900k globally distributed routes revealed
traffic-volume-weighted AS-node diversities of 90.8% and
86% for IPv4 and IPv6 respectively; these rise to 93.7% and
90.5% when considering Inter-AS-path diversity. The sig-
nificant path diversity available to CPR evidenced by these
numbers is a consequence of a strict requirement for edge
networks: POPs must be interconnected to multiple transits
in order to survive outages of individual providers or local
exchange points. Since most client traffic is preferentially
exchanged over peering, the addition of a transit provider has
a limited impact in improving latency. Instead, multihoming
is primarily a form of insurance. In this light, CPR is of great
interest to edge network operators in that it extracts greater
value from what is otherwise a necessary cost.

6 Operational considerations

CPR has been in use for over two years. This section revisits
some of our original assumptions in the light of our accrued
experience, as well as highlight some of the tweaks that were
required along the way.

Per-route overrides. While it is beneficial to enable CPR
by default on edge hosts, and the parameters derived in §5.1
are adequate for a wide range of conditions, there are cases
where it is desirable to override configuration on a per-route
basis. For example, rerouting intra-POP traffic onto transits is
ineffective as a mitigation strategy, and costly due to the large
volume of traffic exchanged between hosts within a POP.

Linux already allows per-route configuration of features,
such as ECN or SACK. We expanded this method to allow the
configuration of CPR on a per-route basis, and extended our
edge host routing daemon to be able to inject routes into the
main routing table accordingly. Over time, this has allowed us
to selectively disable or experiment with CPR on a per-route
basis as an integral part of our BGP policies. This evolu-
tion was gradual: what started exclusively as a server-side,
transport layer extension has been progressively incorporated
operationally as an extension of our routing infrastructure.

Middleboxes. Rerouting ongoing connections could in the-
ory adversely interact with stateful middleboxes, which would
be presented with packet streams for which the TCP three-
way handshake happened in a different path (and hence was
not observed). The expected outcome of this potential prob-
lem, increased TCP RST rates or silently dropped packets for
treatment connections compared with control (see §5.2), has
not been observed in practice after multiple years of sustained,
worldwide, multi-Tbps usage. This is not unexpected, since

different router-level paths within the same AS between given ingress and
egress pairs, and multiple peering points between two adjacent ASes in
an AS path, both quantities are lower bound estimates of actual dataplane
path diversity. Second, under these definitions a number of high-volume
destination prefixes advertised by directly connected peers will be counted as
presenting zero diversity whilst in reality presenting negligible impairment
risk as their path reliability is very high. These have been removed from the
analysis in §5.3, but are reported in their entirety in appendix A.1.

CPR does not modify the TCP header in any way. From the
perspective of intermediate devices, CPR reroutes are indistin-
guishable from other reroutes events, such as those triggered
by BGP or ECMP rehashes.

Prefix aggregation. It is natural to consider extending CPR
by aggregating per-connection information and using it to in-
fluence routing. If many connections in a given prefix stall,
only to recover successfully after a reroute, we could avoid
future stalls by overriding the route for that prefix. Evalu-
ating this approach is outside the scope of this paper, but
the implementation is far from straightforward once we con-
sider its risks. Firstly, as evidenced by §§5.1 and 5.2, not
all transport-layer impairments will be correctable by path
reselection. This means that there is always the danger of
overriding routing and traffic engineering policy in an attempt
to resolve a suspected problem that cannot be fixed that way.
This risk is severely amplified by performing routing interven-
tions on entire prefixes. A related threat is that, in addition to
natural variability, stall signals are also susceptible to adver-
sarial manipulation. Using stall recovery information to route
entire prefixes would amplify the impact of such an attack,
potentially burdening the edge network with higher transit
costs or end-users with higher latency. Finally, there is no a
priori reason to assume that the same routing intervention
will have the same effect on every subprefix covered by an
Internet-advertised prefix. Whereas this tradeoff is irrecon-
cilable at the prefix level, it is trivially accommodated at the
connection level.

Avoiding peering offload. As noted in §4, whereas routes
in the main table are learned from both settlement-free peers
and transits, routes in the transits table are only learned from
transits. Therefore, CPR path reselection can re-route connec-
tions away from PNIs and IXPs and onto transits, which would
typically result in greater costs and potentially less direct paths
to destinations. During our design phase we accepted this lim-
itation because the alternative is for connections to remain
stalled; an opportunity to recover then makes the cost benefit
positive. Although the nature of colocation facilities makes it
relatively rare for a single POP to be connected to multiple
IXPs, it would be beneficial to be able to failover from PNIs
to IXPs. In our current architecture, this capability can only
be provided at the cost greater routing complexity (defining
the set of failover routes on a per-destination basis).

Path reselection. While one could envision more complex
path selection algorithms than those presented in §3, in our
experience the additional complexity does not translate to
significant benefits. The simplicity of CPR is a core feature,
providing quick recovery and effective load balancing without
burdening operators with configuration overhead.

Userspace support. CPR need not be limited to the kernel,
it can be leveraged or selectively disabled by any userspace
application. To support this, we reserved bits in fwmark, which
can be set via a setsockopt system call, to communicate
application intent to the Linux kernel networking stack.

We reserve one bit in fwmark to signal that the connection
for the given socket must not be rerouted. This allows CPR to
be disabled on a per-connection basis for measurement and
debugging purposes. For example, it may be necessary for a
connection to be sent over an application-defined path to test
path performance or to debug networking issues.

In order to support UDP based transport protocols, we allow
userspace applications to directly manipulate the value of r.
Surfacing control over the reroute counter through the fwmark
effectively pushes route reselection out of the kernel.

QUIC. One of the primary drivers for userspace support of
CPR has been the ongoing deployment of QUIC [38]. QUIC
supports connection migration [31], and over time we expect
this to be the primary mechanism for path failover. As of
today, however, QUIC connection migration may be disabled
by either peer, and can only be used after connection establish-
ment. Furthermore, migration must be initiated by the receiver,
who must send a probe packet from a new local address. CPR
on the other hand covers connection establishment, and can
be triggered unilaterally on the sender side, where stalls are
more quickly detected. Since there is nothing intrinsic to CPR
that makes it fundamentally incompatible with connection
migration, we view both methods as complementary and are
actively experimenting with CPR within QUIC. While vali-
dating the use of CPR within QUIC is the subject of future
work, the implementation itself is straightforward and bears
testament to the overall elegance and simplicity of CPR.

7 Related work

Although multiple solutions in the literature address the de-
tection and mitigation of path impairments, none provides
feature parity with CPR. To the best of our knowledge, the
design of CPR is unique in its simplicity, which makes it ex-
tremely easy to deploy. It is the only solution providing path
failover at a connection granularity, which does not require
switches with programmable dataplanes or support from the
client endpoint, and which makes it possible to identify and
mitigate performance degradation even if a connection is not
currently established.

Our work is most closely related in motivation and ap-
proach to INFLEX [58] and Blink [28]. Both use transport-
layer triggers to reroute traffic and, unlike CPR, rely on pro-
grammable data plane switches. While INFLEX reroutes
stalled flows on a per-connection basis, it does so by installing
ephemeral route entries onto a switch. It can therefore not
support failover for all connections at the scale edge networks
operate. Blink on the other hand relies on the ability to mon-
itor sequence numbers of ongoing TCP flows. This poses
not only scale concerns, which Blink addresses by limiting
itself to only monitoring high volume prefixes, but also can-
not work on encrypted transport protocols such as QUIC.
Finally, by detecting failures and re-routing on a route/prefix
granularity, Blink suffers from the same pitfalls of traditional

Table 3: Comparison of path failover mechanisms

Feature BGP

[48]

MPTCP

[24]

SWIFT

[29]

INFLEX

[58]

Blink

[28]
CPR

Pre-establish connection
support

3 7 7 3 partial 3

Partial failures support 7 3 7 3 partial 3

Granular failover 7 3 7 3 7 3

Support all connections
and prefixes

3 3 3 7 7 3

No client support required 3 7 3 3 3 3

No switch support required 3 3 7 7 7 3

O(seconds) convergence 7 3 7 3 3 3

Production validation 3 3 7 7 7 3

routing protocols. Smaller failures can go undetected, and
reroute decisions can result in substantial changes in traffic
allocation, exacerbating the risk of cascading failures due to
downstream congestion. CPR on the other hand can be en-
abled for all flows, and can detect outages and impairments
on a per-connection basis. Re-routing is also performed on a
per-flow basis, and as a result traffic can be offloaded and dis-
tributed in a more granular fashion. CPR can also afford more
sophisticated failure detection implementations, for example
based on RTT variation, that passive monitoring in switch
dataplanes cannot support.

SWIFT [29] infers the extent of failures through the analy-
sis of BGP updates. While it reduces the time to route conver-
gence, its reliance on BGP route updates makes it oblivious
to a wide array of failure scenarios. By the authors’ own
admission, it is also unable to improve the time taken to re-
ceive BGP updates, which itself is on the order of multiple
seconds [28]. CPR bypasses routing messages altogether, and
can more accurately detect more types of failure in less time
by simply piggy-backing on existing transport mechanisms.

Although a number of egress routing control systems aim to
mitigate some of the same issues as CPR (e.g., Espresso [64]
or Edge Fabric [52]), CPR again differentiates itself by op-
erating on individual connections rather than prefixes. This
makes it complementary to such systems: it is possible to use
them to apply intelligent egress traffic engineering, whilst still
relying on transport extensions like CPR to mitigate transient,
sub-prefix path impairments. In fact, since CPR depends on
specific routing primitives for its operation (e.g., those pro-
vided by Silverton [14, 57]), CPR requires a subset of the
functionality provided by these systems.

FlowBender [34], similarly to CPR, uses transport-layer
metrics to trigger path reselection decisions, but for the pur-
pose of intra-datacenter load balancing. However, in contrast
to CPR, it 1) requires Explicit Congestion Notification (ECN)
which is not safe to use with anycast traffic [49, 59]; and 2)
requires control of the ECMP hashing configuration of routers
along the path to implement its reroute mechanism. These
two issues make it unsuitable for providing resilience against
Internet path failures. Similarly, although SD-WAN solutions
(e.g., [22,65]) can achieve for overlay networks results similar

to CPR, they are neither unilaterally deployable nor a good
fit to the business model of an edge cloud network.

Multipath TCP (MPTCP) [24] makes it possible to establish
single connections over multiple paths and load balance traffic
automatically to the best performing path. Inheriting from
previous multipath-aware transport such as shim6 [44] and
SCTP [55], MPTCP has slowly gained traction in niches such
connection handoff [10]. In the same way the usage of CPR
is not at odds with QUIC, we do not view CPR as inherently
incompatible with MPTCP. CPR works well precisely where
MPTCP often falls short, for example by improving reliability
for short lived flows which dominate web traffic, protecting
connection establishment, or exploiting path diversity without
requiring clients to explicitly identify distinct paths (e.g., with
distinct addresses). In contrast with CPR, MPTCP provides
no value when interacting with legacy TCP clients, since
it is not unilaterally deployable. By tying itself to a legacy
wire format, MPTCP is also less forward looking than QUIC.
Given the significant economic investment required to deploy
and support a new transport protocol, it is unsurprising that
edge networks have collectively focused on the latter. Over
time we expect QUIC to fully assimilate the explicit multipath
capabilities of MPTCP, while still falling back to implicit
multipath mechanisms such as CPR.

8 Conclusion

This paper presented Connection Path Reselection (CPR),
a novel system that improves the reliability of edge net-
works [52, 64] by inferring the status of a path by monitoring
transport-layer forward progress, and rerouting stalled flows
onto healthy paths.

CPR is unabashedly simple, and follows in a long tradition
of incremental improvements to the Internet which push the
boundaries of best effort delivery. While it cannot protect
flows against all failures, the cases in which it is effective
come virtually for free. Our implementation is trivial to con-
figure, effortless to operate, requires no additional hardware
and exploits path diversity already available to edge networks.
By operating at the transport layer, CPR provides faster recov-
ery than is attainable by routing alone, as well as detecting
a wider array of potential failures on a per-connection basis
without incurring additional state.

Importantly, this paper is not a proposal - CPR has been
deployed in production at a large scale edge network for over
two years. We evaluate our design within this context, and
document our assumptions for the benefit of a wider commu-
nity. To the extent of our knowledge, CPR both complements
existing routing and traffic engineering mechanisms, and can
coexist with multipath enhancements to transport protocols in
the future. As a bridge between the two, CPR is a step towards
the collective goal of ensuring that only a complete partition
is capable of stalling an Internet transport connection.

Acknowledgements

We would like to thank our shepherd Italo Cunha and the
anonymous reviewers for their feedback. We are also very
grateful to the engineers at Fastly who have contributed to the
deployment, monitoring and operation of CPR over the years.

References

[1] The CAIDA UCSD AS classification dataset,
2020-07-01. https://www.caida.org/data/as-
classification.

[2] Geometric distribution. In Statistical Distributions,
chapter 23, pages 114–116. John Wiley & Sons, Ltd,
2010.

[3] Linux ip sysctls. https://www.kernel.org/doc/
Documentation/networking/ip-sysctl.txt, Aug.
2020.

[4] SONiC default BGP hold timer. https:
//github.com/Azure/sonic-buildimage/blob/
833584eff96fca37579d2d792807a8b69c47e701/
dockers/docker-fpm-frr/frr/bgpd/templates/
general/instance.conf.j2#L8-L9, Nov. 2020.

[5] FRRouting default BGP hold timer. https:
//github.com/FRRouting/frr/blob/
ca7b6587b2a8d3d15e04c00b5201030340d5d1d2/
bgpd/bgpd.h#L1756, Feb. 2021.

[6] F. Ahmed, M. Z. Shafiq, A. R. Khakpour, and A. X. Liu.
Optimizing internet transit routing for Content Delivery
Networks. IEEE/ACM Transactions on Networking,
26(1):76–89, 2018.

[7] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitara-
man. A measurement-based analysis of multihoming.
In Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’03, pages 353–364, New
York, NY, USA, 2003. ACM.

[8] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh.
A comparison of overlay routing and multihoming route
control. In Proceedings of the 2004 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’04, pages
93–106, New York, NY, USA, 2004. ACM.

[9] A. Akella, S. Seshan, and A. Shaikh. Multihoming
performance benefits: an experiment evaluation of prac-
tical enterprise strategies. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference,
ATEC ’04, page 9, USA, 2004. USENIX Association.

[10] Apple. Improving Network Reliability Us-
ing Multipath TCP. https://developer.
apple.com/documentation/foundation/
urlsessionconfiguration/improving_network_
reliability_using_multipath_tcp.

[11] Arista. Border Gateway Protocol (BGP) - EOS 4.25.1F
User Manual. https://www.arista.com/en/um-
eos/eos-border-gateway-protocol-bgp, 2021.

[12] B. Augustin, T. Friedman, and R. Teixeira. Measur-
ing load-balanced paths in the internet. In Proceed-
ings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC ’07, pages 149–160, New York, NY,
USA, 2007. Association for Computing Machinery.

[13] B. Augustin, T. Friedman, and R. Teixeira. Measuring
multipath routing in the internet. IEEE/ACM Transac-
tions on Networking, 19(3):830–840, June 2011.

[14] D. Barroso. Developing and evolving your
own control plane. NANOG ’71. https:
//pc.nanog.org/static/published/meetings/
NANOG71/1438/20171002_Barroso_Developing_
And_Evolving_v1.pdf, Oct. 2017.

[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, oct 2008.

[16] O. Bonaventure and S. Seo. Multipath TCP deploy-
ments. IETF Journal, 2016, November 2016.

[17] M. Calder, R. Gao, M. Schröder, R. Stewart, J. Padhye,
R. Mahajan, G. Ananthanarayanan, and E. Katz-Bassett.
Odin: Microsoft’s scalable fault-tolerant CDN measure-
ment system. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
501–517, Renton, WA, apr 2018. USENIX Association.

[18] Cisco. Cisco IOS IP routing: BGP command reference.
https://www.cisco.com/c/en/us/td/docs/ios/
iproute_bgp/command/reference/irg_book/irg_
bgp4.html, Oct. 2013.

[19] D. Clark. The design philosophy of the DARPA internet
protocols. In Symposium Proceedings on Communi-
cations Architectures and Protocols, SIGCOMM ’88,
pages 106–114, New York, NY, USA, 1988. Association
for Computing Machinery.

[20] A. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very large networks. Phys. Rev.
E, 70:066111, Dec 2004.

[21] A. Dhamdhere and C. Dovrolis. ISP and egress path se-
lection for multihomed networks. In Proceedings IEEE

https://www.caida.org/data/as-classification
https://www.caida.org/data/as-classification
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://github.com/Azure/sonic-buildimage/blob/833584eff96fca37579d2d792807a8b69c47e701/dockers/docker-fpm-frr/frr/bgpd/templates/general/instance.conf.j2#L8-L9
https://github.com/Azure/sonic-buildimage/blob/833584eff96fca37579d2d792807a8b69c47e701/dockers/docker-fpm-frr/frr/bgpd/templates/general/instance.conf.j2#L8-L9
https://github.com/Azure/sonic-buildimage/blob/833584eff96fca37579d2d792807a8b69c47e701/dockers/docker-fpm-frr/frr/bgpd/templates/general/instance.conf.j2#L8-L9
https://github.com/Azure/sonic-buildimage/blob/833584eff96fca37579d2d792807a8b69c47e701/dockers/docker-fpm-frr/frr/bgpd/templates/general/instance.conf.j2#L8-L9
https://github.com/Azure/sonic-buildimage/blob/833584eff96fca37579d2d792807a8b69c47e701/dockers/docker-fpm-frr/frr/bgpd/templates/general/instance.conf.j2#L8-L9
https://github.com/FRRouting/frr/blob/ca7b6587b2a8d3d15e04c00b5201030340d5d1d2/bgpd/bgpd.h#L1756
https://github.com/FRRouting/frr/blob/ca7b6587b2a8d3d15e04c00b5201030340d5d1d2/bgpd/bgpd.h#L1756
https://github.com/FRRouting/frr/blob/ca7b6587b2a8d3d15e04c00b5201030340d5d1d2/bgpd/bgpd.h#L1756
https://github.com/FRRouting/frr/blob/ca7b6587b2a8d3d15e04c00b5201030340d5d1d2/bgpd/bgpd.h#L1756
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://www.arista.com/en/um-eos/eos-border-gateway-protocol-bgp
https://www.arista.com/en/um-eos/eos-border-gateway-protocol-bgp
https://pc.nanog.org/static/published/meetings/NANOG71/1438/20171002_Barroso_Developing_And_Evolving_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG71/1438/20171002_Barroso_Developing_And_Evolving_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG71/1438/20171002_Barroso_Developing_And_Evolving_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG71/1438/20171002_Barroso_Developing_And_Evolving_v1.pdf
https://www.cisco.com/c/en/us/td/docs/ios/iproute_bgp/command/reference/irg_book/irg_bgp4.html
https://www.cisco.com/c/en/us/td/docs/ios/iproute_bgp/command/reference/irg_book/irg_bgp4.html
https://www.cisco.com/c/en/us/td/docs/ios/iproute_bgp/command/reference/irg_book/irg_bgp4.html

INFOCOM 2006. 25th IEEE International Conference
on Computer Communications, pages 1–12, 2006.

[22] Z. Duliński, R. Stankiewicz, G. Rzym, and P. Wydrych.
Dynamic traffic management for SD-WAN inter-cloud
communication. IEEE Journal on Selected Areas in
Communications, 38(7):1335–1351, 2020.

[23] O. Filip, P. Machek, M. Mares, M. Matejka, and O. Za-
jicek. BIRD 2.0 user’s guide. https://bird.network.
cz/?get_doc&v=20&f=bird-6.html, Oct. 2019.

[24] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and
C. Paasch. TCP extensions for multipath operation with
multiple addresses. RFC 8684, RFC Editor, March 2020.

[25] V. Giotsas, C. Dietzel, G. Smaragdakis, A. Feldmann,
A. Berger, and E. Aben. Detecting peering infrastructure
outages in the wild. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’17, pages 446–459, New York, NY,
USA, 2017. ACM.

[26] D. Goodin. BGP event sends European mo-
bile traffic through China Telecom for 2 hour.
https://arstechnica.com/information-
technology/2019/06/bgp-mishap-sends-
european-mobile-traffic-through-china-
telecom-for-2-hours/, June 2019.

[27] J. He and J. Rexford. Toward internet-wide multipath
routing. Netwrk. Mag. of Global Internetwkg., 22(2):16–
21, Mar. 2008.

[28] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti,
S. Vissicchio, and L. Vanbever. Blink: fast connectivity
recovery entirely in the data plane. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 161–176, Boston, MA, Feb.
2019. USENIX Association.

[29] T. Holterbach, S. Vissicchio, A. Dainotti, and L. Van-
bever. SWIFT:predictive fast reroute. In Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, pages 460–473,
New York, NY, USA, 2017. ACM.

[30] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378, June 1973.

[31] J. Iyengar and M. Thomson. QUIC: a UDP-based mul-
tiplexed and secure transport. Internet-Draft draft-ietf-
quic-transport-34, IETF Secretariat, January 2021.

[32] Y. Jin, S. Renganathan, G. Ananthanarayanan, J. Jiang,
V. N. Padmanabhan, M. Schroder, M. Calder, and A. Kr-
ishnamurthy. Zooming in on wide-area latencies to

a global cloud provider. In Proceedings of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’19, pages 104–116, New York, NY, USA, 2019.
Association for Computing Machinery.

[33] Juniper. hold-time (protocols BGP). https:
//www.juniper.net/documentation/en_US/
junos/topics/reference/configuration-
statement/hold-time-edit-protocols-
bgp.html, Dec. 2020.

[34] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene.
Flowbender: flow-level adaptive routing for improved
latency and throughput in datacenter networks. In Pro-
ceedings of the 10th ACM International on Conference
on Emerging Networking Experiments and Technologies,
CoNEXT ’14, pages 149–160, New York, NY, USA,
2014. Association for Computing Machinery.

[35] N. Kephart. Route leak causes global outage in
level 3 network. https://www.wired.com/2008/02/
pakistans-accid/, Feb. 2015.

[36] N. Keukeleire, B. Hesmans, and O. Bonaventure. In-
creasing broadband reach with hybrid access networks.
IEEE Communications Standards Magazine, 4(1):43–
49, 2020.

[37] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. De-
layed internet routing convergence. In Proceedings of
the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
SIGCOMM ’00, pages 175–187, New York, NY, USA,
2000. Association for Computing Machinery.

[38] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar,
J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin,
R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T.
Chang, and Z. Shi. The QUIC transport protocol: design
and internet-scale deployment. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, pages 183–196, New
York, NY, USA, 2017. ACM.

[39] S. Larson. Here’s why you may have had internet
problems today. https://money.cnn.com/2017/
11/06/technology/business/internet-outage-
comcast-level-3/index.html, June 2017.

[40] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian.
Optimizing cost and performance for content multihom-
ing. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIG-
COMM ’12, pages 371–382, New York, NY, USA, 2012.
ACM.

https://bird.network.cz/?get_doc&v=20&f=bird-6.html
https://bird.network.cz/?get_doc&v=20&f=bird-6.html
https://arstechnica.com/information-technology/2019/06/bgp-mishap-sends-european-mobile-traffic-through-china-telecom-for-2-hours/
https://arstechnica.com/information-technology/2019/06/bgp-mishap-sends-european-mobile-traffic-through-china-telecom-for-2-hours/
https://arstechnica.com/information-technology/2019/06/bgp-mishap-sends-european-mobile-traffic-through-china-telecom-for-2-hours/
https://arstechnica.com/information-technology/2019/06/bgp-mishap-sends-european-mobile-traffic-through-china-telecom-for-2-hours/
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/hold-time-edit-protocols-bgp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/hold-time-edit-protocols-bgp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/hold-time-edit-protocols-bgp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/hold-time-edit-protocols-bgp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/hold-time-edit-protocols-bgp.html
https://www.wired.com/2008/02/pakistans-accid/
https://www.wired.com/2008/02/pakistans-accid/
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html

[41] D. Madory. Widespread impact caused by Level 3 BGP
route leak. https://dyn.com/blog/widespread-
impact-caused-by-level-3-bgp-route-leak/,
Nov. 2017.

[42] A. Medina. CenturyLink / Level 3 outage analysis.
https://blog.thousandeyes.com/centurylink-
level-3-outage-analysis/, August 31st, 2020.

[43] K. P. Murphy. Machine learning: a probabilistic per-
spective. The MIT Press, Cambridge, MA, 2012.

[44] E. Nordmark and M. Bagnulo. Shim6: Level 3 multi-
homing shim protocol for IPv6. RFC 5533, RFC Editor,
June 2009.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: machine learn-
ing in Python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[46] B. Peirens, G. Detal, S. Barre, and O. Bonaventure. Link
bonding with transparent Multipath TCP. Internet-Draft
draft-peirens-mptcp-transparent-00, IETF Secretariat,
July 2016.

[47] Y. Pi, S. Jamin, P. Danzig, and F. Qian. Latency im-
balance among internet load-balanced paths: a cloud-
centric view. In Abstracts of the 2020 SIGMETRIC-
S/Performance Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIGMET-
RICS ’20, pages 65–66, New York, NY, USA, 2020.
Association for Computing Machinery.

[48] Y. Rekhter, T. Li, and S. Hares. A Border Gateway
Protocol 4 (BGP-4). RFC 4271, RFC Editor, January
2006.

[49] L. Saino. Hashing on broken assumptions. NANOG ’70.
https://www.nanog.org/sites/default/files/
1_Saino_Hashing_On_Broken_Assumptions.pdf,
June 2017.

[50] M. Sargent, J. Chu, D. V. Paxson, and M. Allman. Com-
puting tcp’s retransmission timer. RFC 6298, RFC Edi-
tor, June 2011.

[51] B. Schlinker, I. Cunha, Y.-C. Chiu, S. Sundaresan, and
E. Katz-Bassett. Internet performance from Facebook’s
edge. In Proceedings of the Internet Measurement Con-
ference, IMC ’19, pages 179–194, New York, NY, USA,
2019. Association for Computing Machinery.

[52] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V.
Madhyastha, I. Cunha, J. Quinn, S. Hasan, P. Lapukhov,
and H. Zeng. Engineering egress with Edge Fabric:
steering oceans of content to the world. In Proceedings

of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, pages 418–431,
New York, NY, USA, 2017. ACM.

[53] R. Singel. Pakistan’s accidental youtube re-routing
exposes trust flaw in net. https://www.wired.com/
2008/02/pakistans-accid/, Feb. 2008.

[54] B. Stelter. Time Warner Cable comes back
from nationwide Internet outage. https:
//money.cnn.com/2014/08/27/media/time-
warner-cable-outage/index.html, Aug. 2014.

[55] R. R. Stewart. Stream Control Transmission Protocol.
RFC 4960, RFC Editor, September 2007.

[56] S. Tao, K. Xu, Y. Xu, T. Fei, L. Gao, R. Guerin, J. Kurose,
D. Towsley, and Z.-L. Zhang. Exploring the perfor-
mance benefits of end-to-end path switching. SIGMET-
RICS Performance Evaluation Review, 32(1):418–419,
June 2004.

[57] J. Taveira Araújo. Building and scaling the
Fastly network, part 1: fighting the FIB. https:
//www.fastly.com/blog/building-and-scaling-
fastly-network-part-1-fighting-fib/, May
2016.

[58] J. Taveira Araújo, R. Landa, R. G. Clegg, and G. Pavlou.
Software-defined network support for transport re-
silience. In 2014 IEEE Network Operations and Man-
agement Symposium (NOMS), pages 1–8, May 2014.

[59] J. Taveira Araújo, L. Saino, L. Buytenhek, and R. Landa.
Balancing on the edge: Transport affinity without net-
work state. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
111–124, Renton, WA, 2018. USENIX Association.

[60] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker.
Characterizing and measuring path diversity of inter-
net topologies. In Proceedings of the 2003 ACM SIG-
METRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’03,
pages 304–305, New York, NY, USA, 2003. Association
for Computing Machinery.

[61] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Po-
lat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quin-
tero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,

https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/
https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/
https://blog.thousandeyes.com/centurylink-level-3-outage-analysis/
https://blog.thousandeyes.com/centurylink-level-3-outage-analysis/
https://www.nanog.org/sites/default/files/1_Saino_Hashing_On_Broken_Assumptions.pdf
https://www.nanog.org/sites/default/files/1_Saino_Hashing_On_Broken_Assumptions.pdf
https://www.wired.com/2008/02/pakistans-accid/
https://www.wired.com/2008/02/pakistans-accid/
https://money.cnn.com/2014/08/27/media/time-warner-cable-outage/index.html
https://money.cnn.com/2014/08/27/media/time-warner-cable-outage/index.html
https://money.cnn.com/2014/08/27/media/time-warner-cable-outage/index.html
https://www.fastly.com/blog/building-and-scaling-fastly-network-part-1-fighting-fib/
https://www.fastly.com/blog/building-and-scaling-fastly-network-part-1-fighting-fib/
https://www.fastly.com/blog/building-and-scaling-fastly-network-part-1-fighting-fib/

F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contrib-
utors. Scipy 1.0 – fundamental algorithms for sci-
entific computing in Python. arXiv e-prints, page
arXiv:1907.10121, Jul 2019.

[62] D. Walton, A. Retana, E. Chen, and J. Scudder. Adver-
tisement of multiple paths in BGP. RFC 7911, RFC
Editor, July 2016.

[63] L. Wasserman. All of Nonparametric Statistics (Springer
Texts in Statistics). Springer-Verlag, Berlin, Heidelberg,
2006.

[64] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Hol-
liman, G. Baldus, M. Hines, T. Kim, A. Narayanan,
A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka,
M. Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic,
V. Valancius, C. Ying, M. Kallahalla, B. Koley, and
A. Vahdat. Taking the edge off with Espresso: Scale, re-
liability and programmability for global internet peering.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’17, pages 432–445, New York, NY, USA, 2017. ACM.

[65] D. Zad Tootaghaj, F. Ahmed, P. Sharma, and M. Yan-
nakakis. Homa: an efficient topology and route manage-
ment approach in SD-WAN overlays. In IEEE INFO-
COM 2020 - IEEE Conference on Computer Communi-
cations, pages 2351–2360. IEEE Press, 2020.

Appendix

A Path diversity

This section provides additional results on path diversity both
at the AS path level (extending the analysis presented in §5.3)
and at the dataplane level in the specific case of paths between
pairs of POPs.

A.1 AS path diversity
This section extends the analysis of AS path diversity pre-
sented in §5.3 by reporting path diversity results disaggregated
by remote AS type and IP version.

We classify destination ASes according to the CAIDA AS
classification dataset [1]. This dataset provides an AS type for
each candidate destination AS: Transit/Access for business
providing Internet connectivity; Content for ASes which pro-
vide content hosting and distribution; and Enterprise for other
entities that are mostly users, rather than providers of Internet
access, transit or content. ASNs for which a classification is
unavailable were tagged as Unknown.

Our findings are presented in fig. 8. Path diversity seems to
induce a stable ordering in which Content destination ASes

a) IP version b) Traffic volume

(i)
A

S-
no

de

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of protected ASNs

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

Content
Enterprise
Transit/Access
Unknown

IPv4
IPv6

Content
Enterprise
Transit/Access
Unknown

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of protected ASNs

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

Content
Enterprise
Transit/Access
Unknown

p80+
lower

Content
Enterprise
Transit/Access
Unknown

(ii
)I

nt
er

-A
S-

pa
th

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of protected Inter-ASN edges

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

Content
Enterprise
Transit/Access
Unknown

IPv4
IPv6

Content
Enterprise
Transit/Access
Unknown

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of protected Inter-ASN edges

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

Content
Enterprise
Transit/Access
Unknown

p80+
lower

Content
Enterprise
Transit/Access
Unknown

Figure 8: Relationship between both AS-node / Inter-AS path
diversity and AS type, disaggregated by a) IP version of the
advertised prefix and b) Traffic volume served.

have the highest diversity, followed by Enterprise, Transit/Ac-
cess and Unknown. While Inter-AS path diversity is under-
standably higher than AS-node diversity, the ordering appears
for both measures. This suggests that, in general, Content
ASes value path diversity the most; this is unsurprising given
the benefits multihoming provides in content delivery [7, 40].
Although similar arguments can be made for multihoming of
Access [8, 21] and Enterprise [9] networks, in practice they
exhibit lower path diversity, potentially because they operate
at a different cost tradeoff point. Whereas every intermediate
AS is node-protected for ∼50% of Content ASes, this only
happens for ∼40% of the Enterprise and Transit/Access pre-
fixes. Overall, there is slightly improved path diversity for
IPv6 compared to IPv4, except for Transit/Access networks
(see fig. 8 i-a and ii-a).

We also consider size in our analysis, motivated by the
intuition that large, well funded entities may plausibly en-
joy better path diversity than smaller ones. We approach this
issue by using traffic volume as a proxy for size, disaggre-
gating those prefixes lying in the top 20th percentile (80th
percentile overall) by traffic volume served from our edge
cloud network. The result of this is presented in fig. 8-b. Al-
though the conjecture that larger entities may enjoy better
path diversity is confirmed for every AS type, it is emphatic
for Content destination ASes: around ∼75% of high-volume
content provider prefixes are fully node- and link-protected
(fig. 8 i-b and ii-b respectively). While ∼30% of Transit/Ac-
cess destination prefixes seem to not be node-protected at all,

as reported in fig. 8 these correspond to directly connected
peers for which path reliability is very high. On the other
hand, ∼40% of Transit/Access destination prefixes are both
AS-node and Inter-AS-path protected.

A.2 Dataplane path diversity between POPs

0 50 100
Path RTT delta [ms] (CDF)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 sr
c

/ d
st

 p
ai

rs

= 0.99
= 0.95
= 0.9
= 0.85

(a) RTT delta between the short-
est and longest paths between
POP pairs

0.8 0.9 1.0
Prob[np 2] (CCDF)

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Pr

op
or

tio
n

of
 sr

c
/ d

st
 p

ai
rs

= 0.99
= 0.95
= 0.9
= 0.85

(b) Proportion of time that two or
more paths are available between
POP pairs

Figure 9: Inter-POP end-to-end path measurements
Although the BGP-based results presented above are suffi-

cient to justify our path selection approach, as stated in §5.3
they constitute lower bounds. For some use cases it may be
advantageous to directly measure dataplane multipath diver-
sity. In this section we present data indicative of the results
of such an analysis. We make use of a measurement mesh
between our ∼80 globally distributed POPs, which continu-
ally perform independent RTT measurements over each one
of their transit providers. By exploring loss episodes in this
mesh we can estimate the probability that, if a BGP-preferred
path is unavailable between two POPs, CPR can find another
one by random choice.

During a given 30 second measurement window, we com-
pute the availability α of a POP-to-POP path as the ratio
between the number of ping probes for which a response was
received and the total number of probes sent. We then com-
pare this to a threshold φ, and define a path as unavailable if
α < φ. We present two measurements using this setup. First,
in fig. 9a we show the CDF of the RTT difference between the
shortest and longest available paths between two given POPs.
We can see that in ∼80% of cases this RTT delta is of at most
∼12.5ms; for ∼95% of cases this upper bound rises to 50ms.
Note that, in general, the behavior of this RTT difference is not
impacted by our choice of φ. This suggests that, for a large
proportion of paths between POPs, alternative paths with simi-
lar RTT are available simply by choosing an alternative egress
- even for relatively high availability requirements. In some
cases, though, these paths can induce significant additional
delay, and hence this effect cannot be dismissed out of hand.

We also compute the proportion of measurement windows,
over a 7 day period, in which at least two POP-to-POP paths
were available between any two POPs. This is presented in
fig. 9b, which shows that for φ = 0.9, ∼96% of POP pairs
have two or more available paths between them for at least
∼90% of the time. Since data collection noise from using ping
invariably leads to packet losses that do not correspond to
path impairments, these numbers constitute a lower bound for
the actual data plane path availability. Nevertheless, even this
rough approximation shows that the random retry strategy
presented in §4 with alternative paths being simply defined
by using alternative egress transits is good enough for CPR.

B CPR state probability reconstruction

START

SYNRCVD*

openreq

HEALTHY

connect

synack_*
estab_*

CLOSED

close_openreq_*

STALLED*

stall_0

close_healthyprogr_*

stall_1+

close_stall_*

Figure 10: The CPR Finite State Machine
This section provides additional details regarding the com-

putation of stall-event-related CPR performance measure-
ments like those described in §5.2.

CPR state machine. A summarized representation of
the CPR state machine is presented in fig. 10. Although
CPR tracks the number of individual reroutes while in the
SYNRCVD* and STALLED* states, these internal subdivisions
and their associated transitions have been omitted (this is de-
noted in fig. 10 with * or +). Stall detection logic is evaluated
at relevant TCP events (e.g., retransmissions). Transitions
between states represent either TCP events (e.g., openreq,
estab*), CPR events (e.g., stall*, progr*) or both (e.g.,
synack*, close*). SYNRCVD* and STALLED* correspond to
points in which path reselection logic can be triggered.

For incoming connections, the SYNRCVD meta-state is en-
tered when a SYN is received (openreq); this will elicit
a SYN-ACK response from the local TCP stack. If this
SYN-ACK is acknowledged, the TCP connection enters the
ESTABLISHED state, and CPR the HEALTHY state. Outgoing
connections enter the HEALTHY state directly upon termina-
tion of the three-way handshake. When connections terminate
naturally (close_healthy), they leave both the TCP and the
CPR state machines. The SYNRCVD meta-state subsumes one

synack* transition for every ACK/SYN-ACK retransmission,
and the STALLED meta-state one stall* transition for every
time a stall is declared (see §3.2). The progr* transitions cap-
ture the possibility of the connection making forward progress
again after a number of stalls. The close* transition, which
corresponds to connection termination, can happen before
connection establishment completes (close_openreq*), af-
ter suffering one or more stalls (close_stall*), or as part
of an orderly teardown while healthy (close_healthy).

Probability reconstruction. Each TCP connection will
increment treatment or control counters for every transition
in fig. 10. To turn these monotonically increasing counters
into meaningful probability estimates they are processed in
15 second windows that we denote export intervals.

We begin with π•(A), the instantaneous occupancy of a
state A, where the subscript will be used to refer to the treat-
ment or control groups. We note that the value of π•(A) at
a given time can be obtained by keeping track of the total
number of connections that have entered A and subtracting
the total number of connections that have left it; this can be
directly computed from the exported counters.

We continue by defining p••, the probability estimates for
transitions in fig. 10. As before, the subscript will denote ei-
ther the treatment or control groups; however, the superscript
will be used to denote either outflow or inflow probabilities.
Borrowing from the usual conditional probability notation,
we denote an outflow probability po

•(B|A) as the probability
that, when a connection transitions out from state A, it will
move on to state B; likewise, we denote an inflow probability
pi
•(B|A) as the probability that a connection transitioning in

to state B originated from state A. An estimate of po
•(B|A) at

the end of an export interval can be obtained by computing
the ratio of the rate at which connections transitioned from
A to B and the total rate at which connections transition out
from A during that export interval; a similar (but opposite)
procedure can be used to compute pi

•(B|A) (rates can be triv-
ially computed by discrete differentiation). Using p•• we can
compute specialized measures that can be helpful when esti-
mating the strength of the association between re-routing and
stall-related connection properties, such as e.g., the risk ratios

ρ(A) =
πt(A)
πc(A)

and

γ
•(B|A) = p•t (B|A)

p•c(B|A)
.

C Stall event extraction

This section provides additional details regarding the extrac-
tion of CPR stall events, like those described in §5.2.

To extract stall events from raw performance counters we
begin by estimating their span, defined as the set of times-
tamps over which they are considered to be active (having

a correlated effect over the stall-related performance mea-
sures π•/p••/ρ/γ• of multiple hosts in the same POP). This is
achieved by first identifying candidate per-host events, which
can then be clustered at the POP level.

The identification of candidate per-host events begins
with standard multidimensional anomaly detection (see e.g.,
[45,61] and references therein) aimed to identify performance
degradation event candidates; this yields a series of points
in time when treatment/control performance differences over
multiple time series may be suggestive of an event. In our case,
we use standard peak-finding techniques (see e.g., [45, 61]
and references therein) to find “potentially interesting” times-
tamps for each stall-related performance measure time series,
and use the intersection of all these subsets of active times-
tamps as our set of candidates. These are further refined by
applying clustering and de-noising based on the inter-event
durations between successive per-host event candidates. This
can be achieved by identifying continuous sequences of can-
didate timestamps. If the separation between any two of these
sequences is smaller than a given clustering threshold, they
are aggregated as part of the same event candidate; conversely,
if after this process their total time span is smaller than a given
threshold, the whole candidate set is discarded. This will yield
a number of per-host event spans, each subsuming multiple
candidates.

To model the state of the world both before the event started
and after it ended we assign to each span a context: two time
periods, one preceding it and one following it. This can be
used as an experimental framework of sorts: if the candidate
event finding logic described above correctly identified a set
of event candidates, we would expect to find a definite statisti-
cal difference between values of at least some π•/p••/ρ/γ• for
timestamps within the candidate span and those within the
context. For every performance time series ρ/γ•, we compute
the average Mahalanobis distance [43] between its context
distribution and its actual values within the candidate span.
The resulting set of distances can then be used to reject the
candidate if it does not provide enough evidence that the
recovered span encompasses a genuine impairment. These
distances will also be used to define an event severity, fol-
lowing the assumption that a larger context/span difference
indicates a more impactful event.

The next stage of the computation is to bring together sets
of events at the POP level that happen at approximately the
same time and which may hence share an underlying cause. To
achieve this, we create a graph where the vertices are the per-
host events, and links denote that the spans of the two event
nodes overlap. This will generate dense cliques when many
host-level events overlap, which would happen if multiple
edge hosts in a POP experienced correlated stalls as a result
of the same event. Although any graph clustering algorithm
could be used (e.g., modularity optimization [15, 20]), trivial
detection using connected components [30] has proven to
be good enough. Once per-POP events have been identified,

event properties from their constituent per-host events (e.g.,
duration, severity) are aggregated into comparable per-POP
event properties.

The logic described can be reused to identify spikes in BGP
updates or withdrawals for all the peers and transit providers
in a given POP, yielding a number of BGP events. These can
then be used to enrich the events found from π•/p••/ρ/γ• by
using a bookending co-occurrence heuristic: if a BGP event
happens immediately before the CPR event starts, it bolsters
the conjecture that the CPR event was caused by the BGP
event; if it happens immediately before the CPR event ends,
it bolsters the conjecture that it mitigated it. By imposing
time thresholds on the maximum time difference between the
CPR and the BGP event spans and measuring the deviation

between the center-of-mass of the BGP event and the start
and end timestamps of the CPR event it becomes possible
not only to assign suspected peers or transit providers to a
given per-POP event, but also to provide a measure of the
association strength between a BGP event and a CPR event.
We use this to define a BGP affinity score to each per-POP
event. Finally, the resulting per-POP events are discarded if
they violate any one of a number of data quality policies, such
as any of the hosts involved being put into maintenance during
the per-POP event span; the total number of connections in
an edge node being too low, which could induce numerical
instability when calculating probabilities; the total number
of nodes which observed the per-POP event being too low,
which could point towards a false positive; etc.

	Introduction
	Background and motivation
	Impairment detection
	Pre-establishment impairments
	Post-establishment impairments

	Path reselection
	Evaluation
	Parameter tuning
	Evaluating benefit and non-harm
	Path coverage

	Operational considerations
	Related work
	Conclusion
	Path diversity
	AS path diversity
	Dataplane path diversity between POPs

	CPR state probability reconstruction
	Stall event extraction

