
A Toolchain for Symplifying
Network Simulation Setup

Lorenzo Saino, Cosmin Cocora and George Pavlou

Communications and Information Systems Group
Department of Electrical and Electronics Engineering

University College London
{l.saino,c.cocora,g.pavlou}@ee.ucl.ac.uk

http://fnss.github.com

{l.saino, c.cocora, g.pavlou}@ee.ucl.ac.uk
http://fnss.github.com

Outline

Fast Network Simulation Setup (FNSS) toolchain

I Background and motivations

I Workflow

I Functional features

Modelling link capacity assignments

I Problem statement

I Proposed solution

I Evaluation

Summary and conclusions

Background and motivation

Setting up a network simulation is a cumbersome and error-prone task.
This requires to:

I select a suitable topology,

I configure it with link capacities, weights, delays, buffer sizes,
protocol stacks and applications,

I generate a traffic matrix or configure traffic sources,

I deploy all this in the target simulator.

No tools currently exist taking care of all these steps. All currently
available tools only provide capabilities to parse or generate unconfigured
topologies or are bound to a specific simulator.

Introducing FNSS

Fast Network Simulation Setup (FNSS) is a toolchain allowing network
researchers and engineers to easily set up a network simulation scenario
(topology, traffic matrix, event schedule) and deploy it in the preferred
target simulator.

FNSS is made of a core library and a number of APIs and adapters:

I The core library, written in Python, generates simulation scenarios
and export them to XML files.

I Adpaters and APIs can be used to import a scenario in the target
simulator:

I APIs: Java, C++, Python
I Adapters: ns-2, ns-3

Workflow

parsers datacentersimplemodelsrandmodels

buffersweightscapacities delays nodeconfig

traffic
matrices

event
scheduling

topologies

netconfig

traffic

C++ ns3ns2Java

XML writers

Python

Topology creation

Import:

I from other generators: BRITE, INET, aSHIIP

I from datasets: RocketFuel, CAIDA AS relationships, Topology
Zoo, Abilene

Generate:

I random topologies: Barabási-Albert, extended Barabási-Albert,
Erdős-Rényi, Waxman, Generalized Linear Preference (GLP).

I datacenter topologies: two-tier, three-tier, fat tree, B-cube

I simple topologies: star, ring, line, dumbbell, tree, mesh

Topology configuration

I Link capacities assignment: constant, manual, random (uniform,
power-law, Zipf-Mandlebrot, user-defined pdf), new centrality-based
models (we’ll talk about them later)

I Link delays assignment: constant, manual, proportional to link
length

I Link weight assignment: constant, manual, proportional to link
delay, proportional to inverse of capacity

I Buffer sizes assignment: constant, manual, bandwidth-delay
product, proportional to link capacity

I Protocol stack and applications: each node can be assigned one
stacks and several applications

Event scheduling

FNSS can produce event schedules and export them to an XML file. An
event schedule is a list of events labelled with an execution time. An
event is modelled as a dictionary of key-value attributes.

For example, an HTTP request event could be:

event = {

’client_ip’: ’192.168.1.24’

’proxy’: ’192.168.1.100:8080’

’method’: ’GET’

’url’: ’http://www.ucl.ac.uk/’

’User-Agent’: ’fnss-client’

’Connection’: ’keep-alive’

}

The target simulator must be able to interpret the meaning of the event
attributes.

Traffic Matrix

FNSS can synthetically generate traffic matrices according to the
Ranking Metrics Heuristic method.1

It can generate the following traffic matrices:

I Static: traffic volumes at single point in time

I Stationary: series of traffic volumes suitable for modelling network
traffic variations over short timescales (up to 1-1.5 hours)

I Cyclostationary: series of traffic volumes suitable for modelling
diurnal patterns in network traffic

1A. Nucci, A. Sridharan, and N. Taft. The problem of synthetically generating ip
traffic matrices: initial recommendations. ACM SIGCOMM Computer Communication
Review, 35(3):1932, 2005.

Deployment in target simulator

Supported target simulators are integrated using different strategies:

I Java, C++ or Python API: Parse topology, traffic matrix and
event schedule XML files and convert them to objects of the target
language

I ns-2 adapter: Python script which parses topology XML file and
converts it to a Tcl script

I ns-3 adapter: ns-3 C++ module capable of parsing topology and
event schedule XML files, deploy the topology, schedules all the
events and start the simulation

I Omnet++ adapter: Python script which parses topology XML file
and converts it to a NED script

Modelling link capacity assignments
Background and problem statement

Background

I Inferred or synthetically generated network topologies do not include
link capacities.

I Little research effort has focused on inferring and modelling link
capacity assignments in an ISP network.

I Common practice in network simulations is to randomly assign link
capacities following various distributions and analyse results
sensitivity.

Problem definition: Let G (E ,V) be a graph with vertices
V = {v1, v2, ...vn} and edges E = {e1, e2, ..., em} representing the
topology of an ISP backbone network whose edges have capacities
belonging to the set C = {c1, c2, ..., cp}, with |C | � |E |, assigned
according to fc : E → C . The objective is to find the most realistic
estimate f̂c of fc , assuming that no additional information about the
network apart from G and C is available.

Modelling link capacity assignments
Proposed solution

Our argument is that a key factor influencing the link capacity
assignment is the importance of the link itself which also depends on the
importance of the nodes that the link connects. Important links are more
likely to have higher capacities.

How do we quantify the importance of links?

I Edge betweenness centrality

I Degree centrality gravity

I Communicability centrality gravity

Our solution is to assign values c of link capacity proportionally to the
value m of the centrality metric considered:

c(u, v) ∝ m(u, v) c(u, v) ∈ C

Modelling link capacity assignments
Evaluation methodology

Datasets: we evaluated the performance of our method on five networks
with known topology and link capacity assignments:

I GEANT: European academic network

I GARR: Italian academic network

I WIDE: Japanese academic network

I RedIris: Spanish academic network

I Uninett: Norwegian academic network

Methodology:

I Assign link capacities according to our method

I Measure how different this assignment is from the real network.

I Random assignment (uniform) used as baseline. This is the most
commonly used method in literature.

Modelling link capacity assignments
Performance metrics

Matching Capacity Ratio (MCR): the fraction of links whose capacity
assignment matches the real capacity

MCR =
|{e ∈ E |f̂ (e) = f (e)}|

|E |

Capacity Rank Error (CRE): RMSE between the rank in C of real and
inferred capacity normalized by |C |

CRE =
1

|C |
×
√

1

|E |
∑
e∈E

[
R(f̂e)− R(fe)

]2

Modelling link capacity assignments
Evaluation Results

GEANT GARR WIDE RedIris Uninett
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
C

R

RAND EDGE BETW DEG COMM

Matching Capacities Ratio (MCR)2

2RAND refers to median MCR value calculated analytically

Modelling link capacity assignments
Evaluation Results

GEANT GARR WIDE RedIris Uninett
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
R

E

RAND EDGE BETW DEG COMM

Capacity Rank Error (CRE)3

3RAND refers to median CRE value calculated analytically

Summary and Conclusions

With this work, we provided two main contributions: the FNSS toolchain
and a novel model of link capacity assignment in an ISP backbone
network.

FNSS toolchain:

I Supports Python, C++, Java, ns-2 and ns-3. Omnet++ support
planned for future release

I Open-sourced, documented, ready to use

Centrality-based models of link capacity assignment:

I Simple model but performance gain is consistent

I Further evaluation and model extension ongoing

http://fnss.github.com

http://fnss.github.com

