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Abstract

Hash-routing is a well-known technique used in server-cluster environments to
direct content requests to the responsible servers hosting the requested con-
tent. In this work, we look at hash-routing from a different angle and apply
the technique to Information-Centric Networking (ICN) environments, where
in-network content caches serve as temporary storage for content. In particular,
edge-domain routers re-direct requests to in-network caches, more often than
not off the shortest path, according to the hash-assignment function. Although
the benefits of this off-path in-network caching scheme are significant (e.g., high
cache hit rate with minimal co-ordination overhead), the basic scheme comes
with disadvantages. That is, in case of very large domains the off-path detour of
requests might increase latency to prohibitive levels. In order to deal with exten-
sive detour delays, we investigate nodal/domain clustering techniques, according
to which large domains are split in clusters, which in turn apply hash-routing
in the subset of nodes of each cluster. We model and evaluate the behaviour of
nodal clustering and report significant improvement in delivery latency, which
comes at the cost of a slight decrease in cache hit rates (i.e., up to 50% improve-
ment in delivery latency for less than 10% decrease in cache hit rate compared
to the original hash-routing scheme applied in the whole domain).

Keywords: information-centric networks, cache aware routing, off-path
in-network caching, nodal clustering/partitioning, hash routing.

1. Introduction

Internet usage patterns have been constantly changing over the last decades,
reaching a situation that was not foreseen when it was originally designed. The
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engineering principles underpinning today’s Internet architecture were created
in the 1960s and 1970s with the assumption that Internet would be mainly used
for host-to-host communications. Instead, nowadays, the Internet is increasingly
being used for content dissemination and retrieval and this trend is forecast to
continue in the foreseeable future [1].

This mismatch between the original design assumptions and current usage
patterns has partially been addressed through application layer solutions such
as Content Delivery Networks (CDN) and Peer-to-peer (P2P) overlays, which
have retrofitted some desirable content-aware functionalities on top of the ex-
isting architecture. However, the lack of native network support for content
distribution restricts the efficiency of such approaches, and also potentially hin-
ders the evolution of the Internet as a whole.

This has created a trend towards content-oriented networking, which has re-
cently been realised through the Information-Centric Networking (ICN) paradigm.
Information-Centric Networking, similarly to P2P and CDNs, puts content itself
in the forefront of attention when it comes to content delivery. That is, content
can be delivered from any network location/device, provided that this device
holds a valid copy of the requested content.

Extending the P2P paradigm, where mainly end-user devices can serve re-
quests for content, the ICN paradigm also includes in-network devices, that
is router caches, as potential content servers. Based on this principle, a new
field of research has emerged coined “in-network caching”. The challenges of
addressing content temporarily stored in router-caches (from now on referred
to as routers, or caches), resolving the location of this cache and fetching the
content from the corresponding network location has recently attracted consid-
erable attention [2]. Such challenges include caching redundancy, efficiency in
utilising in-network storage [3] and replacement of content in caches according
to their popularity [4], to name a few. Last but not least, an ICN network
operates based on packet-sized content chunks, instead of content objects (or
files), as is the norm in case of overlay/proxy caching. This fact adds one more
requirement to the operation of in-network content caches - that of line speed
operation.

In this paper, we deal with the resolution of requests to in-network content
caches in domain-wide environments and the optimisation of the resolution pro-
cess in order to increase cache hits, but also keep the latency needed to reach
the cache under certain limits. Our cache-aware routing scheme utilises hash-
routing techniques, which have been proposed in the past for mapping requests
to physically co-located servers [5], [6]. According to hash-routing, each element
within the network (be it servers in server-racks, or routers within a domain net-
work) are assigned with a range of the hash space and store the content items
whose hashed identifiers fall within the node’s hash space. In contrast to al-
ternative architectural proposals according to which extra resolution steps are
essential (e.g., [7], [8], [9]), this operation avoids complex request-to-cache res-
olution and minimises signalling overhead (the only overhead is the calculation
of the hash function itself).
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(a) Hash-routing Functional Architecture (b) Symmetric and Asymmetric Hash-
routing

Figure 1: Hash-routing Functional Architecture and Symmetric/Asymmetric options for Re-
quest and Content Routing.

1.1. Background on Hash-Routing

Similar to the work in [10], we also target here domain-wide ICN deploy-
ments, where a content naming scheme, flat or hierarchical, is in place. Also, the
edge-domain routers implement a hash function that determines both the con-
tent placement and the request-to-cache routing process. In particular, when an
edge router receives a content request, calculates the hash of the content identi-
fier and redirects it to the responsible cache. If the requested content is cached
in the corresponding router, the content is returned to the client, otherwise,
the request is forwarded towards the original server. In a similar way, incoming
content items responded for the origin server are forwarded for caching (or not)
according to the hash of their identifier. As it is described in [10], the main
concept underpinning our approach is that a content can be opportunistically
found in a domain only in the cache calculated by the hash function.

The hash-routing schemes proposed in this paper require edge-domain routers
and cache nodes to implement a hash function which maps content identifiers to
cache nodes. This function is used: i) by cache nodes to identify the set/range
of content identifiers or names that they are responsible for, and ii) by edge
routers to route requests to the corresponding cache node (see Figure 1(a)). As
a result of this approach, each content object can be cached in a domain at most
once, thus preventing redundant replication of cached content and resulting in
more efficient utilisation of cache space. This approach also allows edge routers
to forward content requests to the designated cache directly, without performing
any lookup. In addition, the intra-domain forwarding procedure is performed
without requiring any sort of inter-cache co-ordination since the hash function
can be computed in a distributed manner by edge routers and caches, thus being
scalable to any domain size.

The hash function maps a content identifier (flat or hierarchical) to a caching
node of the domain. Such function does not need to produce a cryptographic
hash. In fact, it is desirable for its output to be produced with minimal pro-
cessing as long as it is capable of mapping content items to cache nodes so that
the load of caches is evenly spread.

For example, in case of human-readable identifiers, like URLs (RFC 3986,
[11]), content items can be mapped to caching nodes by hashing their identi-
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fiers using fast non-cryptographic hashing functions such as Murmur, Jenkins,
xxHash, CityHash and CRC32 and then applying modulo hashing over the num-
ber of caching nodes. In case of binary content identifiers, such as those defined
by RFC 6920 [12], modulo hashing can be applied directly on content names.

Consistent hashing [6] may also be used to minimize the number of items to
be remapped as a result of failures or additions or removals of caching nodes.
The choice of the specific hash function is out of the scope of this paper, since
it does not affect the optimisation process proposed here, and each network
manager can choose the one that fits its own specifications.

In [10], we have designed and evaluated the performance of five different
algorithms that take advantage of hash-routing techniques in ICN environments.
The differences between the five algorithms proposed in [10] lie in the routing
and replication process followed for requests and content objects, respectively.
In particular, it is clear from Figure 1(b) that hash-routing techniques can follow
symmetric or asymmetric paths to deliver the content. In the interests of space,
we omit the details of the different hash-routing techniques investigated in [10]
and refer the reader to that paper for further details.

1.2. Contributions

Hash-routing falls in the group of off-path in-network caching techniques, as
opposed to on-path in-network caching (e.g., [3], [13] - see further discussion in
Section 2), according to which content is fetched from caches, only if the re-
quest “hits” the content along the path to the content origin. Although on-path
in-network caching techniques by definition do not require any co-ordination be-
tween cache nodes, they result in suboptimal performance, as we have already
demonstrated in [10]. In contrast, off-path caching techniques improve perfor-
mance in terms of cache hits, but come at the cost of extra coordination, e.g.,
[7], [14].

Hash-routing techniques clearly improve the performance of the cache net-
work in terms of cache hits, as shown extensively in [10] and at the same time
require minimal co-ordination among network nodes. However, this increase in
cache-hits comes at the cost of increased latency caused by the detouring re-
quired to look up the responsible cache. This tradeoff is clearly affected by the
number of extra hops to be travelled off-path to find the cached content. In case
of a small network/domain, this latency might be negligible, but as the size of
the network increases (and depending also on topological characteristics, such
as the density of the network graph, its diameter, etc.), the increase in latency
might become prohibitive.

Building on this tradeoff, in this paper, we investigate the potential of parti-
tioning the network using node clustering techniques to keep the latency under
certain bounds. We introduce the system model in Section 3. We make use
of the well known “k-split clustering” [15], [16] and “k-medoids clustering” [17]
techniques and we also introduce a new “Bin packing content assignment func-
tion” (Section 4). Our results show that by splitting large domains in clusters
the latency to hit and deliver cached content indeed drops. Inevitably and ex-
pectedly, this comes at the cost of lower cache hit rates (up to 50% improvement
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in delivery latency for less than 10% decrease in cache hit rate). The choice of
whether an ISP makes use of hash-route clustering and which clustering tech-
nique to use depends on the interests and the business model of the particular
ISP. We finally lay down the options different ISPs might have according to
domain sizes.

2. Related work

The topic of in-network content caching has received wide attention recently
in the context of Information-Centric Networks. Generally speaking, and ac-
cording to [2], the in-network caching problem can be split in three distinct
subproblems, which we next discuss in turn. These are the allocation of caches
to network routers and the economic incentives of ISPs and other market play-
ers to adopt the new networking paradigm; the placement of content into the
caches and the subsequent discovery and retrieval of content from the network
caches.

2.1. Cache Allocation and Economic Incentives

First and foremost comes the issue of allocating cache space in network
routers. This includes both the capital expenditure needed in order to place
cache memory in routers, but also the decisions as to where should memory be
allocated inside the network.

The economic implications of in-network caching have been investigated in
recent studies, focusing on the incentives needed by ISPs and content providers
to deploy and operate in-network caches [18], [19], [20]. Furthermore, inter-ISP
issues related to in-network caching (e.g., savings from transit traffic) and new
pricing models have been investigated in [21], [22], [20]. Motivated by similar
concerns on the cost implications of caching, the authors in [23] design a “Cost-
Aware cache decision policy”, based on which caches hold the content that will
bring the most savings to the ISP in terms of transit traffic.

2.2. Content Placement

The content placement problem deals with the placement of content in
caches. The placement can be either proactive or reactive. In proactive con-
tent placement, the operator decides on which content should be cached where
in an offline manner [24], [25], [26]. Proactive caching has been extensively used
in CDN networks and overlay cache networks. In Information-Centric Net-
works, instead, reactive content placement is the dominating strategy. Among
other reasons, this is because caching and data retrieval operations happen at
line-speed. This is in contrast to CDN settings, where the CDN operator can
place/cache and migrate content proactively according to expected demand. As
such, most works in this area have focused on placing content in in-network
caches in order to optimise traditional caching metrics such as delivery latency
based on content popularity assessment [4], [27], content locality [28], or cache
redundancy and cache resource management [3], [13].
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2.3. Request to Cache Routing

After proactively or reactively placing content in caches, the system needs to
poses the right mechanisms in order to direct content requests to the right cache.
Request to cache routing can follow one of two approaches, either oppostunistic
on-path, where content is searched on-path as the request is travelling towards
the content source, or co-ordinated off-path, where requests are forwarded off
the shortest path to some designated cache that is likely to hold this content.
The most prominent solution to this problem is to hold an extra routing table
which maches requests to content items cached in nearby nodes. Representative
proposals in this space are [29], [30], [31] and [32].

The techniques proposed in [7], [8] and [14] use co-ordination techniques be-
tween the data and the control plane to place content and re-direct requests to
the corresponding caches. Finally, in [33] two methods are proposed to route
requests to the nearest replica of a content by either flooding requests or meta-
requests to discover the content location. We argue that such approaches intro-
duce considerable amounts of overhead and delay and as such result in inherently
less scalable solutions. Last but not least, recently, the authors in [34] have pro-
posed scoped flooding-based content discovery. The proposal includes a ring
model, which limits the spread of the flood to the neighbourhood. The results
show that although there is some overhead, the scoped-flooding approach is far
from prohibitive and can in fact scale and achieve considerable gains.

2.4. Balancing Tradeoffs

Both on-path and off-path caching present trade-offs. On-path content
caching requires less co-ordination and management, but may provide limited
gains. Conversely, off-path content placement and retrieval can attain higher
hit rates at the cost of extra co-ordination and communication overhead. Co-
ordination overhead refers to the decision making process of where to cache
incoming content, as well as to the forwarding rules that (re-)direct incoming
requests to cached content [35], [36]. Communication overhead, on the other
hand, refers to the redirection of requests and the retrieval of content from
off-path caches, which involve possibly traversing longer paths and therefore,
increasing network load [7], [35], [36], [37].

Hash-routing techniques are off-path caching techniques, but the adoption
of a hash function to determine the location of cached content eliminates the
need for inter-cache co-ordination typical of other off-path caching techniques.
Hash-routing is a widely used technique in the context of Web caches [5], [6],
but only to route requests among co-located nodes.

In [10], we showed that hash-routing techniques can be successfully used
in a domain-wide ICN environment to maximise cache hits without any co-
ordination requirement. Subsequent to our work, similar techniques have been
proposed. CoRC [9], for example, proposes to route content requests based on
their hash, but with the specific purpose of reducing the size of routing tables
rather than improving caching efficiency.

In this work, we further extend the state of the art in hash-routing tech-
niques by providing a practical way to bound latency, hence making it suitable
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for topologies of arbitrary size. In particular, we argue that in case of large
network domains, the hash-route-based re-direction of requests results in very
long paths, hence, prohibitively increasing the latency to reach cached content.
We therefore, introduce domain clustering techniques, which are applied in an
offline manner and split the domain in smaller clusters. In turn, each cluster is
in charge of a separate hash-function which only applies to the specific nodes
in that cluster. We argue and show that domain clustering reduces excessive
latency, due to hash-routing, but at the same time achieves considerable cache
hit rate performance.

3. System Model and Problem Formulation

We consider an information-centric network of arbitrary topology, which can
be represented as a graph G = (V, E). Let V denote the set of ICN routers and
E the set of communication links connecting them. Let also Cv be the storage
capacity (in bits) of router v ∈ V. Throughout the paper we will use the
calligraphic letters to denote sets and the corresponding capitals for cardinality;
for example |V| = V .

Let M denote a given and fixed set of M content items that have to be
delivered over the network. Throughout this paper, we assume that all items
are of equal size and all nodes have the same storage capacity (Cv = C, ∀v ∈
V)1. We normalise the size of each item to one unit with respect to node’s
storage capacity (sm = s = 1, ∀m ∈ M) and, hence, each node can hold up
to C different unit-sized items. Note that the NDN [38] information-centric
architecture segments content items into smaller, individually-named, pieces to
allow flexible distribution and receiver-driven flow control.

Upon receipt of a request, an edge router calculates the hash of the content
identifier and forwards it to the responsible cache. In the case of cache hit, the
content is returned to the client, otherwise the request is forwarded towards
the original server. We denote by o = {o1, . . . , oM} the set of origin servers
for every content item, where om /∈ V the origin server regarding information
item m ∈ M (typically a node outside the examined domain). We also denote
with e = {e1, . . . , eM} the egress nodes for every content item, where em ∈ V is
the domain node through which a request will be forwarded towards the item’s
origin server om.

Content requests are generated with rate rv = {r1v, . . . , rMv }, where rmv
denotes the aggregate incoming request rate (in requests per second) generated
by users attached at node/cache v for item m. Vector rv is an estimate of the
actual request pattern based on observed, historical content access data (within
a given time window). This estimate is used as a prediction for the future
number of requests addressed to each node. The optimal way to perform this
estimation is out of the scope of this paper, but we adopt an approach similar

1In the evaluation section we also consider a scenario with different storage capacities
among the nodes of the network.
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to [39], using an exponential moving average function in each measurement
window.

We approximate item popularity by a Zipf law distribution of exponent z
[40], [41]. Generally, the popularity of each content item may differ from one
geographic location to another, a phenomenon that is referred to as locality
of interest (spatial skew in [42]). In our model, this is captured through a
localised request generation model, where the aggregate request pattern rv is
different across regions. We assume V different regions each served by an ICN
router. All regions are characterised by the same value for the Zipf distribu-
tion exponent which captures the global popularity of items and at each region
the ranking/order of the items within the Zipf distribution is different, which
captures the different locality of interests.

A given hash assignment function ρ maps a content item identifier to a
cache/node in the domain. Let binary matrix Y (ρ) ∈ {0, 1}M×V denote hash
mapping ymv (ρ) ∈ {0, 1} on whether content item m is mapped to node v accord-
ing to the hash assignment function ρ. Ideally, the used hash function should be
capable of mapping content items to caches so that the load of caches is evenly
spread and the items are cached as close as possible to the requesting users.
In order to increase the utilisation of the intra-domain cache space, we assume
that each content item can be cached in a domain at most once, thus prevent-
ing redundant replication of the items and increasing the cache hit within the
domain. So in this paper we assume that

∑
v∈V y

m
v (ρ) = 1, ∀m ∈M. The same

equation also holds in the partitioned domain (see Section 4), wherein this case
an item is cached at each cluster/sub-domain at most once.

We denote by pmv (t) ∈ {0, 1} the probability of finding information item m
cached in the domain’s node v at time t, where ymv = 1. This probability is a
function of the dynamics of the content item’s popularity assigned to the corre-
sponding cache node, the dynamics of the popularity of all the items assigned
to the same node, as well as the cache size of the corresponding node. In other
words:

pmv (t) = f(r̂mv , r
′,Y (ρ),Pv(ρ), C) (1)

where: (1a)

r̂mv =
∑
j∈V

rmj , (1b)

r′ = {
∑
j∈V

y1j r
1
j , . . . ,

∑
j∈V

yMj r
M
j }, (1c)

Pv(ρ) =

M∑
i=1

yiv. (1d)

Note that Pv(ρ) is the set of items that the hash assignment function ρ has
assigned to node/cache v, and Pv(ρ) is its cardinality.

When the capacity of a cache node v is larger than the total size of the
content items that the utilised hash function has assigned to it (C > Pv(ρ)),

8



then the pmv (t) probability is always equal to one. In a real scenario, however,
the total cache capacity of the domain is usually smaller than the total size of the
information space and as such the hash function assigns to a cache more items
than those it can permanently store. Generally, the amount of items that are
assigned by a hash function at each cache is a function of the total capacity of the
domain. For example, a modulo-like hash function assigns Pv ≈ Cv

M∑
v∈V Cv

=
M
V items at each cache node v ∈ V, assuming equal cache capacity among the
network nodes. In those cases the probability of finding an item at a cache is
a time varying function that depends on various network dynamics as shown
in Eq.(1). The evolution of an information item cached in a node assuming an
LRU replacement strategy can be modelled as an absorbing Markov chain; in
[43] we provide a thorough analysis of the time required for an item cached at
a node to be discarded. On the other hand, an exact formula for probability
pmv (t) cannot be exported by the analysis of such a Markov chain, since this
relies not only on the dynamics of the items assigned to a cache but also on the
evolution of an item within the cache itself (e.g., in which position is the item
located and which items are in front or behind it in the cache) [44].

A request for content item m generated at node u at time t, incurs a cost
equal to Dvu(t), if served by node v (ymv = 1). Parameter Dvu(t) captures the
cost (e.g., latency, monetary cost) of transferring content from node v to node
u when the request is issued from a user attached at node u at time t. In this
work, we consider the retrieval latency as one of our basic metrics and we have:

Dvu(t) =

{
dvu if pmv (t) = 1,

demu + domem if pmv (t) = 0,
(2)

or else
Dvu(t) = dvu · pmv (t) + (demu + domem) · (1− pmv (t)), (3)

where dvu is the actual latency (in ms) between nodes v and u. When an item
is not cached within the domain it is fetched from the corresponding origin node
through the corresponding egress node.

From Eq.(3) it is obvious that the incurred latency is also a function of the
capability of a domain to cache content, the efficiency of the used hash function
(how far is the requested item assigned from the area of interest) and the size of
the domain (the larger the domain, the larger the distance between its nodes).

The main contribution of this paper is based on this last observation. Since
the distance that a request has to travel before it can reach the node responsible
for caching the hashed identifier depends on the size of the domain, we address
this issue by splitting large domains in smaller hash-routing clusters. In the
following, we discuss the algorithms used for domain clustering, as well as the
specifics of the hash-assignment functions used in this study.

Discussion

Deriving an exact, closed-form equation for pmv (t) is subject of a separate
study and hence, out of the scope of this paper. Therefore, here, in order to
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better understand the correlation between: i) the storage capacity of a node,
ii) the population of items assigned at each cache, and iii) the probability of
finding an item at a cache, we use the analysis presented in [45] (also known
as Che’s approximation), for obtaining approximate hit/caching probabilities of
the LRU replacement algorithm. Che’s approximation introduces the concept
of characteristic time ctm of each item m in a cache, which corresponds to the
time spent by an item in a cache from insertion to eviction. In other words is
the time needed for the Pv − 1 remaining items stored in a cache (above m) to
be requested Cv times and thus evict item m from the cache of node v, given
that item m is not re-requested within this interval. The characteristic time is
a random variable specific to each item, but in [45] a mean field approximation
is used to derive a single constant characteristic time for all items of a cache
(ctm = ct,∀m ∈ Pv). This approximation has been shown to be very accurate
under various conditions [46].

The characteristic time ct of a cache v of size Cv items subject to a stationary
demand of the items Πv =

{
π1
v , π

2
v , . . . , π

m
v , . . . , π

Pv
v

}
is the value ct for which:

Pv∑
m=1

1− e−π
m
v ct = Cv ⇒

Pv∑
m=1

e−π
m
v ct = Pv − Cv, (4)

where πmv is the request probability of item m.
The characteristic time can then be used to compute the average cache hit

probability for each item. For example, the cache hit probability of item m at
cache v assuming an LRU cache replacement strategy is:

p̄mv = 1− e−π
m
v ct. (5)

The above approximation is for LRU caches, but in [47] authors demonstrated
its applicability to a large variety of cache replacement policies including FIFO,
Random and k-LRU.

Although Che’s approximation is a tractable and remarkably accurate ap-
proximation, it does not allow to express cache hit probability in a closed form.
This is because Eq. 4 cannot be formulated to as a function of the charac-
teristic time, which instead needs to be computed numerically. A closed-form
formula for the computation of the average cache hit probability is derived in
[48], although it is valid only under the assumption that content popularity is
Zipf-distributed. The closed form formula is the solution to a K-order polyno-
mial equation, which can be solved in arbitrary accuracy by increasing K. Due
to space limitations, we refer the interested reader to [48] for the exact formula
when K = 2 and K = 3. Instead, here, we present in Figure 2 the hit probability
of each item for a given storage capacity per node and for different number of
items Pv assigned at each node. We present the hit probability for two skewness
parameters, z = 0.1, z = 0.7 for the input Zipf-distributed demand.

From Figure 2, as well as from the analysis presented above we observe that
as we increase the number of items that are assigned for caching at each node
(due to limited number of nodes to apply the hash function) the corresponding
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Figure 2: Per item average cache hit probability for various number of items assigned at a
node of given storage capacity and for two skewness parameters for the input Zipf-distributed
demand.

cache hit probability decreases significantly. According to Eq. 3, this leads to
increased retrieval latency. Despite the fact that the analysis in [48] requires a
power law demand for the set of items that are assigned at each node and, hence,
cannot be directly applied here, it is a useful mechanism to better comprehend
the trade-off between the cache hit ratio and the incurred retrieval latency.
This will become even more clear in the performance analysis later on. Note
here that due to the strict requirement for power law demand distribution we
cannot use the analysis in [48] as an alternative and further provide the possible
performance gaps to be obtained between the results from a general case and
that from the Zipf-distributed demand. The closed form formula in [48] can
only be used in the extreme case where we partition a network of V nodes in
V clusters. In that extreme scenario all the items are assigned at each node
and the power law demand distribution of the requests at each node is the same
with the demand at the corresponding cache.

4. Nodal Partitioning and Hash routing

From the above analysis it is evident that there exists a trade-off between
the cache hit ratio (probability of finding a requested item cached within the
domain i.e., Eq. (1)) and the incurred latency for the retrieval of an item (i.e.,
Eq. (3)). In particular, for a given hash function ρ and a given total amount
of cache deployed in some domain, the larger the domain, the larger the overall
cache capacity (assuming equal cache capacity among the network nodes), which
means less items assigned to each node (Pv(ρ),∀v ∈ V) something that in turn
increases the overall cache hit ratio (i.e., pmv ,∀v ∈ V and ∀m ∈ M). On
the other hand, larger domains implies larger intra-domain distances/latencies
between the node issuing a request and the node where the item is assigned.

In this section we describe a method to significantly decrease the retrieval
latency of a content item at the expense of a tolerable decrease in the cache
hit ratio for a given hash function. We also introduce a new offline centralized
content assignment function (in Section 4.2) that further reduces the content
retrieval latency and enhances the load balancing capabilities of the underlying
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routing scheme at the cost of increased cache co-ordination among nodes, re-
taining at the same time similar cache hit ratio performance with other more
distributed hash functions (e.g., random or modulo hash functions).

4.1. Domain clustering/partitioning techniques

We make use of algorithms originally proposed in the area of data mining to
leverage the above mentioned trade-off. Specifically, partitioning/clustering of
the domain into clusters/sub-domains based on certain similarity metrics can
both significantly reduce the average retrieval latency of an item and retain a
large cache hit ratio.

Partitioning a domain of V nodes into N clusters facilitates hash routing
at cluster-level. Thus, it can substantially reduce the size of the sub-domains
decreasing in that way the distance between the requesting and the serving
nodes. On the other hand, the application of a hash function at a smaller set of
nodes means that a larger set of items is assigned at each node, something that
might decrease the cache hit ratio of the system, deteriorating the efficiency of
the hash routing technique.

4.1.1. k-split domain clustering

The problem of clustering a set of nodes in a set of N clusters is generally
NP-hard [49]. Here, we use a well defined low-complexity clustering scheme
from the literature as one of our partitioning techniques. Particularly, we adopt
the k-split clustering algorithm proposed in [15] and [16] in order to partition
the initial domain. The k-split algorithm clusters the domain into k clusters
and its objective is to minimise the maximum inter-cluster distance based on
a similarity metric. This means that initially a representative similarity index
I (metric) has to be derived for the nodes of the domain in order to partition
the nodes in sub-domains. In this paper we use two different similarity metrics
alongside with the k-split algorithm.

Similarity metrics

In its simplest form, the actual topological latency/distance between two
domain nodes can be considered as a single dimensional feature for clustering.
In this case, similarity of two nodes v1 and v2 is captured by their topological
distance (e.g., hop count, latency, etc.) as,

Idist(v1, v2) = dv1v2 . (6)

The usage of the above metric alongside with the k-split clustering algorithm
produces sub-domains, where the distance of a node v that belongs at cluster
n ∈ N from the other nodes within the same cluster n is always smaller than
the distance of the same node v from any other node belonging to any of the
rest of the clusters N \ {n}.

Generally though, calculating similarity over a more detailed feature set
captures characteristics more precisely and enables us to address the spatial
variation of request rates rv. In this direction, we consider a hybrid similarity
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metric based both on the topological distance as above, but also on the pairwise
Euclidean distance of the content popularity at each node of the network, i.e.,

Iw.pop(v1, v2) =(1− w)
dv1v2

max
v∈V

(dv1v2)
+

+w

(√ ∑
m∈M

(
rmv1 − rmv2

)2)−1

max
v∈V

(√ ∑
m∈M

(
rmv1 − rmv2

)2)−1 ,
(7)

where w ∈ [0, 1] is a weight for favouring either the relative topological distance
between the nodes of the network or the relative Euclidean distance between the
content popularity (request pattern) at those nodes. The usage of the Euclidean
distance of content popularity transforms the Euclidean space of popularity into
a metric space that can be combined with the topological distance of two nodes
in the network.

Summarising, the k-split domain clustering algorithm enabling the above
metric (Iw.pop) forms clusters where the nodes of each cluster are not only in
close proximity to each other, but also groups users with similar request patterns
as well. Below we present in pseudo-code the k-split clustering algorithm.

Algorithm 1 k-split Algorithm
Require: V : number of nodes

k: number of clusters
I: matrix with pairwise similarity metrics of nodes (v1, v2)

Ensure: The contents of each cluster Ki {ith cluster}
vj {node j}
hi {first node/head of cluster i}
SET h1 = v1 ; K1 ← {v1, . . . , vV }
for l = 1 to k − 1 do

FIND d← max{I(hj , vi)|vi ∈ Kj and 1 ≤ j ≤ l}
LET vi the node that has the maximum distance d
PLACE vi to Kl+1

SET hl+1 = vi {vi is the first node/head of cluster l + 1}
for vt ∈ (K1 ∪ · · · ∪Kl) do

LET j is the cluster that vt ∈ Kj

if I(vt, hj) ≥ I(vt, vi) then
PLACE vt from Kj to Kl+1

end if
end for

end for
RETURN (K1, . . . ,Kk)

4.1.2. k-medoids domain clustering
We also make use of a second well-defined low-complexity algorithm for the parti-

tion of the domain. Particularly we use the k-medoids clustering algorithm [17], which
attempts to minimise the distance between nodes belonging to the same cluster and
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a node designated as the centre of that cluster. To run the k-medoids algorithm, we
need to initially select the k nodes that will play the role of the centre of each cluster.
Here we use the graph-based metric of betweenness centrality in order to find the k
cluster centres. We remind that the betweenness centrality is an indicator of a node’s
centrality in a network. It is equal to the number of shortest paths from all vertices to
all others that pass through that node. A node with high betweenness centrality has
a large influence on the transfer of items through the network. After electing the k
nodes with the largest betweenness centrality and assigning them as the centre of each
cluster, we associate each one of the rest of the nodes (V − k) to the closest medoid,
based on their actual topological distance (i.e., duv). If a node is equally close to more
than one cluster centres, we assign it to the cluster with the smallest population of
nodes.

Originally, the k-medoids algorithm (a.k.a. PAM algorithm) randomly select k
out of the V nodes as the medoids and clusters the rest of the nodes according to the
selected similarity metric. This procedure is followed iteratively for every combination
of k out of V nodes and the configuration with the lowest cost is selected. Due to the
exhaustive search approach though, the k-medoids algorithm can significantly affect
the complexity of the network partitioning procedure and for that reason we used the
betweenness centrality attribute of the nodes, for the election of the medoids as a
way to further reduce its complexity. For comparison reasons we also present in the
performance evaluation section another alternative for the election of the medoids.
Particularly, we use the average distance of a node towards every other node in the
network as the metric for the election of the k cluster centrers, but in general we left for
future investigation the performance analysis of other variations of the used clustering
algorithms, as well as other similarity metrics. Below we present in pseudo-code the
k-medoids clustering algorithm.

Algorithm 2 k-medoids Algorithm
Require: V : number of nodes

k: number of clusters
I: matrix with pairwise similarity metrics of nodes (v1, v2)
B: matrix with the betweenness centrality of nodes (or avr. distance)

Ensure: The contents of each cluster Ki {ith cluster}
vj {node j}
mi {first node/medoid of cluster i}
for l = 1 to k do

FIND argmax
vj

(B) {find the nodes with the largest bet. centr.}

SET ml = vj and Bj = 0 {assign the medoids of the clusters}
PLACE vj to Kl

end for
for j = 1 to V do

SET D = [0, 0, . . . , 0] {D has k entries}
for l = 1 to k do

SET D(l) = I(ml, vj)
end for
FIND argmin

l
(D) {the cluster that the node is closer to its medoid}

PLACE vj to Kl

end for
RETURN (K1, . . . ,Kk)

Clustering of large data sets into subsets, where the members in a cluster are more
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similar to each other than the members in different clusters, is a well investigated
issue in the area of data mining. According to the method adopted to define clusters,
the clustering algorithms can be broadly classified into four types (Partitional, Hier-
archical, Density-based and Grid-based). For the purpose of this paper partitional
clustering is the most suitable type, since the algorithms of this type attempt to de-
termine an integer number of partitions that optimise a certain criterion function.
Also, the two used members of this type (i.e., k-means and k-medoids) are the most
commonly used and they provide near optimal clustering, presenting at the same time
low complexity of implementation. Of course, different clustering algorithms can be
used for the partitioning of the domain, but due to space limitations this is left for
future investigation. An overview of existing clustering schemes can be found in [50].

4.2. Content-to-cache mapping function

Once the sub-domains have been determined, an appropriate content-to-cache
mapping function ρ should assign the content identifier of each item to a node of
each sub-domain. As mentioned earlier, such function does not need to produce a
cryptographic hash. In fact, it is desirable for its output to be produced with mini-
mal processing. For example a modulo hashing of the content identifier is a suitable
candidate and it is the basic hash function that we use in the performance evaluation
section. Such a simplistic hash function allows the routers where the content requests
are issued to forward them to the designated cache directly, without performing any
lookup. In addition, this is performed without requiring any sort of inter-cache co-
ordination since the hash function is computed in a distributed manner by the routers,
thus achieving great scalability.

An ideal hash function should be capable of mapping content items to cache nodes
so that the load of the caches is evenly spread. Also, an ideal hash function should
incorporate the spatial characteristics of the content popularity at each region of the
network and assign a content item as close as possible to the region of maximum
interest. In that case a request for an item will not have to travel far within the
network achieving smaller average retrieval latency. Also, by equally spreading the
load across the network nodes, we can load-balance the network traffic and reduce
significantly the stress of each link.

Unfortunately, a distributed hash function, like the modulo one, is not possible to
achieve the above goals. To address these shortcomings we propose a new Bin packing-
like content-to-cache assignment function whose objective is to evenly spread the load
across the caches and at the same time assign content closer to the area of maximum
interest. Of course, this is done at the expense of increased inter-cache coordination,
since a coordination scheme should be adopted by the nodes of the network in order
to compute the hash mapping matrix described previously in Section 3.

Bin packing content assignment function (Bin)
We remind that in a bin packing problem (e.g., [51], [52]) items of different volumes

(content popularity) should be assigned to a finite number of bins each of specific vol-

ume (equal load in our case). Particularly, we assume that a load of ≈
∑

v∈V
∑

m∈M rmv
V

requests should be assigned to each cache of a network of V nodes, assuming equal
capacity among the nodes of the network. In order to enhance the efficiency of the
proposed assignment function we allow each node v to accommodate items of total

request capacity up to Rv = (1+ b)
∑

v∈V
∑

m∈M rmv
V

, where b ≥ 0 is a trade-off between
evenly spreading of the load and increased network performance (i.e., smaller retrieval
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latency or smaller link stress). So, the Bin packing assignment function assigns items
to a cache of the network until a total of

Rv = max

{
max

v∈V,m∈M
(
∑
v∈V

rmv ), (1 + b)

∑
v∈V

∑
m∈M rmv

V

}
(8)

requests have been assigned. Eq. (8) ensures that every item will be assigned to a
cache even if the “even load distribution” requirement is violated. The first argument
in the maximisation function of Eq.(8) ensures that in the case that an item is of very
high popularity it can still be assigned to a node of the network.

The Bin packing assignment function is similar in rationale to the Greedy-global
offline placement algorithm proposed in [53], which also uses workload information
such as distance from the caches and request rates to assign content items to the
caches. In particular, the newly proposed algorithm initially assumes that the hashing
map Y (ρ) is empty. Then, at each iteration, the algorithm assigns each item m ∈M
to the node u ∈ V that yields the maximum average latency gain, starting from the

most important one according to the item’s relative popularity gm =
∑

v∈V rmv∑
v∈V

∑
i∈M riv

(the item’s total request rate over the total request rate of every content item in the
network):

u = arg maxGm (9)

where Gm = {Gm
1 , . . . , G

m
V }, (9a)

and Gm
u =

∑
v∈V

rmv dvu, (9b)

s.t.
∑
v∈V

∑
m∈M

rmv y
m
v ≤ Ru. (9c)

The algorithm continues for as long as not more that Ru requests (i.e., Eq. (9c))
have been assigned to this node. The algorithm iterates until all the content identi-
fiers have been assigned to exactly one cache. Note that, in contrast to a modulo-like
assignment function, the Bin packing assignment does not necessarily assign the same
number of items to each cache. Instead, items are assigned to each node, so that all
caches are evenly loaded. The proposed algorithm could be either executed centrally
by a centralized manager which collects all the necessary information from the nodes
of the network, or it could be executed in a distributed manner where a set of cooper-
ating managers are strategically placed in the network. This set of managers can be
introduced in the network through a mechanism similar to the one presented in [54],
but the actual realization of this approach is out of the scope of this paper.

With Bin packing assignment edge nodes are no longer able to resolve content-
cache mappings by computing a hash function as in the case of modulo hashing.
However, this can be still computed fast and with low memory requirements, for
example using Bloom filters [55]. When the centralized manager (or the distributed
managers) computes bin packing assignment offline, it also computes a set of Bloom
filters, one per each caching node, indicating what content items each caching node is
responsible for, and distribute them to edge nodes. An edge node can then identify
the authoritative cache for a content by querying the Bloom filters for all the nodes
in its cluster. Since each cluster only has a limited number of caching nodes, this
operation is expected to be executed fast. In addition, it can also be easily accelerated
by parallelization using SIMD processors, like GPUs. False positives can be addressed
simply by sending an Interest to each caching node for which the lookup was successful.
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The proposed Bin packing- assignment function is a centralized offline iterative
algorithm which requires M (total number of items) iterations and has a computational
complexity of O(VM) computations, where V is the total number of nodes in the
examined domain. Note also, that the algorithm yields the optimum solution regarding
the assignment of the identifiers to the nodes of the network since items are assigned
only once at each domain (sub-domain in the clustering case) and no replicas of each
item are allowed. It is obvious that the proposed Bin assignment function presents
higher complexity compared to a modulo-like assignment function. In the evaluation
section we examine both the modulo and the newly proposed assignment function and
we provide a thorough comparison between them for every partitioning and routing
scheme that we use (routing in a single domain or in the partitioned sub-domains) and
for various network performance metrics; we examine how this additional complexity
can further improve the performance of the hash routing framework.

5. Numerical Evaluation

5.1. Evaluation setup

In this Section, we evaluate through simulations the performance of hash routing
in combination with the offline partitioning/clustering schemes presented in Section 4.
We compare the performance of clustering techniques with the original hash-routing
proposal [10] applied in the whole network/domain. Moreover, we examine two dif-
ferent content-to-cache assignment functions namely the modulo assignment function
(Mod) and the newly proposed Bin packing assignment function (Bin). For compari-
son we also evaluate the performance of on-path content placement with opportunistic
request to cache routing initially presented in [38]. According to this scheme, content
items are cached as they travel through the network by every on-path cache and a
request searches for a cached item on every cache along the resolution path. Table 1
depicts the whole spectrum of our methodology.

To carry out our performance evaluation we used Icarus [56], a discrete time event
simulator for in-network caching and ICN environments. In the majority of the exper-
iments presented here, we use a large network topology of V = 110 nodes (Interoute
topology [57]) from the Internet Topology Zoo dataset [58], whereas in the last sce-
nario we experiment with different real world topologies from the same dataset. The
purpose of this experiment is to investigate whether the performance of the proposed
hash routing and clustering schemes is affected by toplogical characteristics. We also
assume that in each node of the network a total of λ = 1 request per second is gen-
erated. The requests at each node are generated according to a Poisson process and
the corresponding λ parameter of the exponential distribution is equal to λ = 1. This
means that at node v the request rate rmv for item m assuming that the Zipf exponent
of the item’s popularity is z and the item is ranked j-th out of the M information
items within the Zipf distribution is given by,

rmv = λ · 1/jz∑M
i=1 1/iz

. (10)

Thus, the request rate for each item at each node varies from 0-1 req/sec depending
on item’s popularity and ranking.

We consider a scenario where M = 100K content items have to be assigned by
the corresponding assignment functions. Recent measurement-based studies indicate
that a small number of items often account for a large portion of traffic, especially
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Table 1: Examined routing schemes.

Scheme HR Assig. func. Dom. Clust. Metric

Single domain HR Yes Bin pack No -

k-split dist. cl. HR Yes Bin pack k-split Idist
k-split w. pop. cl. HR Yes Bin pack k-split Iw.pop

Bet. centr. cl. HR Yes Bin pack k-medoids Idist
Avr. distance cl. HR Yes Bin pack k-medoids Idist
On-path no-HR No - No -

Single domain HR mod. Yes Modulo No -

k-split dist. cl. HR mod. Yes Modulo k-split Idist
k-split w. pop. cl. HR mod. Yes Modulo k-split Iw.pop

Bet. centr. cl. HR mod. Yes Modulo k-medoids Idist
Avr. distance cl. HR mod. Yes Modulo k-medoids Idist

for users located in certain areas (e.g., a university campus [59]), or embedded in a
social network [60]. This advocates that a small portion of the population of the items
available in the network is actually requested. Additionally, the usage of Zipf distribu-
tions for the items’ popularity implies that 100K items may account for the ≈ 95% of
the total demand considering an information space of approximately 500K items. On
these grounds, our choice for the size of the items’ population can be considered fair.
This is further enhanced by recent results in [61], where authors analysed the traffic
of a leading online video content provider in China (PPTV) over a two-week period
with more than 196 million viewing instances involving more than 16 million users.
Their findings show that, overall, these users watched around 500K unique videos and
the distribution of user access to video content follows a Zipf distribution. The rest of
the items not considered by the assignment function are assumed to be served directly
from the origin server and are not considered in the following performance figures. We
also assume that the background traffic generated in the network is negligible, and we
left for future work the inclusion of this traffic in the process for the clustering of the
network into sub-domains.

We also assume that the latency dij between two neighboring nodes i, j ∈ V and
(i, j) ∈ E in the same administrative domain, typically ranges from a few up to 200
ms [62, 63], depending on the geographical coverage of the network.

For the evaluation of the proposed schemes we initially assume empty caches and
for a period of T = 6hours (warm up period) we allow the system to populate the caches
of the network. Afterwards, we monitor the performance of the network for a period of
T = 12hours (observation period). Based on the request pattern observed during the
warm up period we partition the domain offline (wherever the Iw.pop metric is used
Eq. 7) and assign the content identifiers to the caches (wherever the Bin assignment
function is enabled). In the majority of the experiments we assume that the request
pattern in the observation period is the same to the pattern in the warm up period,
but we present in Section 5.5 a set of experiments where we have different patterns
between the two periods in order to examine the resilience/robustness of the proposed
schemes.

Our evaluation is based on the following metrics:

• The Average Intra-domain Latency (in msec) is the mean transfer time of a

18



Figure 3: The performance gain (Min and Max) of weight value w = 0.7 in Iw.pop over various
values of w vs. the total number of clusters/sub-domains in the network.

content item from a network cache to the node where the request was generated.

• The Cache Hit Ratio is the ratio of the content requests that have found the
requested item cached within the network, over the total number of requests
issued during the observation period.

• The Average Link Stress (ALS) (in items/sec) is the mean number of delivered
content items that travel through each link of the network.

• The Maximum Link Stress (MLS) (in items/sec) is the maximum number of de-
livered content items that travel through the most constrained/congested link of
the network. This metric along with the Average Link Stress metric is indicative
of the load balancing capabilities of each examined scheme.

In the schemes that use the the hybrid similarity metric Iw.pop, which incorporates
both the topological distance and the request pattern of the nodes of the network we
assume that the weight w in Eq. (7) is equal to w = 0.7. Due to space limitations we
cannot depict the performance of this metric for various values of w, but based on the
given setup we found that this value (w = 0.7) performs best among all considered
performance metrics. In particular, we depict in Figure 3 the performance gain (Min
and Max) using parameter value w = 0.7 over twenty different values for w and for
various values regarding the total number of clusters/sub-domains in the network.
Also, we depict in the following figures only the greyed schemes from Table 1. The
greyed schemes that enable hash routing (HR) use the newly proposed Bin assignment
function, which generally behaves better than the modulo assignment function. To
highlight the extra merits of the Bin assignment function, we also present an one-
to-one comparison of every examined scheme that uses the Bin function against the
counterpart scheme that uses the modulo function. Finally, for the schemes that
enable the Bin assignment function we assume that the parameter b in Eq.(8) is equal
to b = 0.05, just to ensure that all items have been assigned in a cache of the network.
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Figure 4: The performance of the examined routing schemes vs. the total number of
clusters/sub-domains in the network.

Figure 5: The performance difference of the Bin assignment function over the modulo assign-
ment function vs. the total number of clusters/sub-domains in the network.

We leave for future investigation the examination of the impact of parameter b in the
performance of the network (improved retrieval latency over uneven load between the
caches).

5.2. Impact of the number of clusters

Figure 4 depicts the impact of the number of clusters N , that the domain is par-
titioned in, on the performance of the network. Note that when a request within a
cluster does not find a cached item at the node which is responsible for the corre-
sponding part of the hash space it always heads towards the origin node. Another
alternative is to assume that a request is sent to other clusters of the same domain in
order to increase the cache hit ratio of the system. Such an approach though, raises
scalability issues since a node should keep track of the cache assignment in every other
sub-domain. Also, due to the probabilistic nature of caching in ICN this might explode
the transfer time of an item, since there is no guarantee that an item will be found in
any other cluster.
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Obviously, the schemes that are applied in a clustered domain are the only ones
affected by the number of clusters. The other two depicted schemes (i.e., Single
Domain HR and On-path no-HR) are presented for comparison reasons. From Figure
4 we observe that a small number of clusters (3-5) can achieve a reduction in the average
retrieval latency up to 60% compared to the single domain scenario at the cost of a less
than 5% cache misses. On the other hand, every scheme that assumes hash routing
and off path caching performs up to eight times better than the simplistic on-path
content placement with opportunistic request to cache routing scheme. Of course, the
on path scheme retrieves the items cached in the domain faster than off-path caching
schemes; this, however, is the case only for 16% of the issued requests, whereas the
remaining 84% is fetched from the origin node. Furthermore, the schemes that involve
clustering manage to better spread/balance the load of the network throughout its
links, performing up to 60% better from the single domain cases in terms of both the
average and the maximum link stress of the network. By partitioning the domain
into clusters we manage to restrict the requests from travelling far in the network and
despite the fact that each node is responsible for more items than in the single domain
hash-routing case, the usage of the proposed clustering schemes allows the network to
utilise better its resources with only a small penalty in terms of cache hit ratio.

From the point of view of the different clustering algorithms and the corresponding
clustering metrics (again in Fig. 4), we observe that the k-medoids algorithm (i.e., Bet.
centr. cl. HR and Avr. distance cl. HR schemes) behave slightly worse both in terms
of retrieval latency and in terms of the cache hit ratio for small number of clusters
than the k-split counterpart. However, its performance is superior when it comes to
the load balancing metrics for more clusters (similar regarding the delay and the cache
hit ratio). Note that since the Bet. centr. cl. HR scheme performs better than the
Avr. distance cl. HR scheme for every conducted experiment we only depict the
former one in the rest of evaluated scenarios.

In Figure 5 we depict the percentage difference of the newly proposed Bin packing
assignment function against the modulo assignment function for every scheme that
incorporates the hash routing technique. Note that both functions perform exactly
the same in terms of the cache hit ratio metric and for that reason we depict only
their one-to-one comparison for the rest of the metrics. From Fig. 5, we observe that
the Bin assignment function behaves up to 25% better than the modulo at the cost of
increased complexity and coordination between the nodes. As the number of clusters
increases the number of nodes within each cluster decreases minimising in that case
the extra merits of the Bin function. For instance, when N = 30, the largest cluster
has only 6 nodes which implies that the assignment function has limited impact on
the performance of such small sub-domains.

In Figure 5 we also depict the computational complexity gap of the Bin packing
assignment function over the modulo one. In more details, we observe that for small
number of clusters (e.g., 5 sub-domains) the complexity of the Bin function is up to fifty
times larger that the complexity of the modulo function. This complexity gap decreases
as we increase the number of clusters, but as mentioned above, so do the merits of Bin
function. This figure may also serve as a benchmark for a network manager to decide
which assignment function to enable, since the off-line Bin function can significantly
improve the performance of the network at a significant higher computational cost.

Takeaway point(s): A small number of clusters can reduce the average retrieval
latency up to 60% with only a small penalty of less than 5% in the cache hit ratio.
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Figure 6: The performance of the examined routing schemes vs. the storage capacity of each
ICN router.

Figure 7: The performance difference of the Bin assignment function over the modulo assign-
ment function vs. the storage capacity of each ICN router.

5.3. Impact of the cache size

In Figure 6, we depict the impact of the cache capacity on the performance of the
routing schemes, expressed as the fraction of the content population that can be cached
at each node. We also assume that the domain is split into five clusters for the schemes
where partitioning of the domain is applied. Generally, we observe the same findings
to the previous experiment where the clustered domain schemes perform up to 50%
better in terms of the mean retrieval delay of an item. Also, we observe an exponential
increase of the cache hit ratio of those schemes and for small cache capacities they
perform less than 5% worse than the Single domain hash routing scheme. The on-
path routing scheme follows a linear increase in the cache hit ratio with regards to the
increase in the cache capacity of each node, but it always performs significantly worse
compared to the hash routing scheme. In particular, for small values of the cache
capacity (≤ 2% of the content population) the corresponding hash routing schemes
perform up to 10 times better than on-path caching.

The three clustering schemes perform up to 50% better than the single domain
scheme in terms of the average link stress of the network, and up to 60% better in
terms of the maximum link stress. This performance gap combined with the high cache
hit ratio of the domain-clustering schemes (for the cases where the cache capacity of
a node is ≥ 2% of the total item population) shows that partitioning of the domain
into smaller domains increases the Quality of Experience of users (i.e., results in low
retrieval latency). At the same time, the inter-domain traffic is minimsed, an issue
which is of primary importance to the ISP, in order to reduce its transit costs.

Figure 7, similarly to Figure 5, shows that the Bin function performs up to 25%
better than the modulo assignment function. Even for very small cache capacities, the
new assignment function that incorporates the spatial characteristics of the request
pattern achieves a significant decrease in the mean retrieval latency (more than 10%).
As discussed before, this performance improvement comes at the cost of extra inter-
cache coordination. Of course in the cases where this extra cost is not tolerable the
simplistic and distributed modulo assignment function is still a reliable solution since
it constantly performs well with respect to every examined performance metric.
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Figure 8: The performance of the examined routing schemes vs. the exponent of the content
popularity distribution.

Takeaway point(s): For small cache capacities, typical in real world scenarios, the
proposed hash routing scheme performs up to ten times better than conventional on
path caching. Furthermore, the partitioning of the domain further improves the users’
perceived QoE and the load balancing capabilities of the network.

5.4. Impact of the popularity distribution

In the above scenarios we assumed a specific value for the Zipf exponent of the
items’ popularity. Measurement-based studies, such as [40], suggest that the Zipf
exponent z for web traffic lies in the range of 0.64− 0.84, while other types of traffic
(e.g., P2P or video) may follow different popularity patterns [41]. In particular, in [61]
authors found that the distribution of the user access to video content is a Zipf-like
with exponent parameter z = 1.174.

In this scenario, we examine a wider range of values for the Zipf distribution.
The results are presented in Fig. 8. Particularly, for small values of z we observe a
behaviour similar to the previous two experiments. For z ≥ 1.3 the set of the items
that account for the majority of the requests is very small and those items tend to
remain cached for the whole duration of the observation period. More in particular,
when z = 1.5 there is a small number of items (≈ 0.005M) that account for the
≈ 97% of the total requests. Those items can almost always be found within the
domain caches. Furthermore, due to the spatial characteristics of the request pattern,
the usage of our sophisticated Bin packing assignment function allows a request to
find them closer to the requesting node, as shown in Figure 9. Particularly, from
Figure 9 we observe that when z ≥ 1.3 the Bin function performs up to 97% better
than the modulo function. Generally, the modulo function is not affected by the Zipf
distribution of the request pattern but at the same time it can not exploit its unique
spatial characteristics. Of course, as explained previously, there is a trade-off between
the actual performance of the network and the scalability of the assignment function
in use. This means that a network manager might prefer a centralised offline complex
assignment function for specific applications (like video distribution), as compared to
a simple modulo assignment function, since this will improve performance at the cost
of extra co-ordination.

Takeaway point: The newly proposed Bin packing assignment function can dra-
matically improve the performance of the content retrieval process, when applied in
systems where the popularity distribution of the content items is less uniform (e.g.,
online video content providers).

5.5. Impact of content popularity dynamics

So far, we have assumed that the content popularity between the warm up and
the observation period is stable and based on the request pattern observed during
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Figure 9: The performance difference of the Bin assignment function over the modulo assign-
ment function vs. the exponent of the content popularity distribution.

Figure 10: The performance of the examined routing schemes vs. the content popularity
alteration factor.

Figure 11: The performance difference of the Bin assignment function over the modulo as-
signment function vs. the content popularity alteration factor.

the warm up period we partitioned the domain (wherever the Iw.pop metric is used)
and assigned the content identifiers to the caches (wherever the Bin function is used).
Generally, content popularity tends to change over time. In this section we assume that
the request pattern observed in the warm up period (and used for the partition and the
content assignment) is different to the pattern observed during the observation period.
We model this modification of request vectors through a popularity alteration factor
a. We assume that the ranking of the items within the Zipf popularity distribution at
each node is altered by a factor a; a ·M items have a different ranking at the beginning
of the observation period than the one at the end of the warm up period.

Figure 10 depicts the impact of this factor on the performance of the examined
schemes. From Figure 10 we observe that this alteration factor has limited impact on
the performance of the examined schemes. Although this was an expected result for
the cases of modulo assignment and the clustering schemes that use the Idist metric,
we expected some differences in the case of the scheme that incorporates the request
pattern for the partitioning of the domain (i.e., k-split w. pop. cl. HR). Nonetheless,
even in case of “k-split w. pop. cl. HR”, we only observe a very small impact in the
network performance even if the ranking of the items has changed up to 60%. This
performance degradation is less than 8% even for the most vulnerable scheme (i.e.,
k-split w. pop. cl. HR).

Of course, as depicted in Figure 11, outdated knowledge of the request pattern
tends to minimise the extra merits of the Bin assignment function, but in all cases,
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Figure 12: The performance of the examined routing schemes vs. the content popularity
alteration factor for non uniform storage capacities of the caches and non uniform alteration
factor at each node.

the schemes that make use of the Bin packing assignment function still perform bet-
ter than those schemes that use modulo assignment. Definitely though, an enhanced
performance of ≈ 2% in a volatile environment might not be enough to justify a cen-
tralised and rather complex function as well as a more sophisticated clustering scheme
instead of a scalable assignment function and a rather simplistic domain partition-
ing scheme. From both figures we deduce that the proposed hash routing technique
(applied in the whole domain or in clustered partitions) is robust against inaccurate
estimation of content popularity and can still operate efficiently even with less accu-
rate estimates of content popularity, which is a major advantage, given the difficulty
of such estimations.

In order to examine the performance of hash routing and the corresponding assign-
ment functions to a more realistic environment, we repeated the above experiment in
a network where the nodes have non equal storage capacity and the alteration factor
is different at each node. Particularly, we assumed that the capacity of each node in
analogous to its degree (number of edges). Assuming that gv is the degree of node
v and C is the total capacity of the network, then the storage capacity of node v is

Cv = C
⌈

gv∑
v∈Vgv

⌉
. Also, we assumed that the ranking of the items within the Zipf

popularity distribution at each node is altered by a random factor a′; a′ ·M items have
a different ranking at the beginning of the observation period than the one at the end
of the warm up period, where a′ ∈ [−a, a]. The results are depicted in Figure 12 and
are in perfect alignment with the results of Figure 10, which implies that hash routing
and the proposed assignment functions can operate under less accurate estimates of
content popularity in every environment (i.e., non uniform storage capacity and non
equal changes in popularity).

Takeaway point(s): The proposed assignment functions and the proposed domain
partitioning techniques are robust against inaccurate estimations of the content pop-
ularity and can be executed in larger time intervals without significant loss in their
inherent merits.

5.6. Impact of the topology size

We have so far experimented using the same real world network topology and
examined the performance of the proposed routing mechanisms for various system
parameters. In this section, we examine the performance of one of the proposed
routing schemes (k-split dist. clustering hash routing algorithm) against the Single
domain HR algorithm for various network topologies from the Internet Zoo dataset.
Figure 13 depicts the performance of the examined routing scheme over the single
domain HR scheme for ten different topologies and for various clustering approaches
(i.e., number of clusters). From Figure 13 we observe that the examined clustering
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Figure 13: The performance difference (gain) of the k-split dist. cl. HR algorithm over the
Single Domain HR algorithm for various network topologies from the Zoo dataset and for
various number of clusters/sub-domains in the network. The last plot shows the maximum
average retrieval latency gain that it can be achieved for each topology and the corresponding
clustering scheme (sub-domains) assuming a tolerable 10% loss in cache hit compared to the
single domain case.

scheme significantly improves the average retrieval latency in every examined topology
with a small penalty in the cache hit ratio. This improvement is subject to the actual
characteristics of the underlying topology and can vary from 2% up to 50% in terms
of decrease in retrieval latency.

The last plot of Figure 13 depicts the maximum performance gain of using the
proposed clustering and hash routing scheme over the Single domain HR when the
network manager can tolerate up to 10% loss in the cache hit ratio. In the same
plot we also depict the clustering degree (i.e., number of clusters) under which this
performance gain can be achieved. From this plot it is clear that the network topology
characteristics severely influence the performance of the used routing scheme. At the
same time, however, it is also clear that it is difficult to find a closed form formula for
the clustering approach that best fits a given network topology, as this depends on the
specific characteristics of each topology. For example the best performance gain for the
topology with the 60 nodes is achieved when it is clustered in four partitions, whereas
the topology with the 92 nodes performs best when partitioned in two sub-domains.

By and large, for topologies of 100 nodes or more, there is a clear increasing trend
of the optimal number of clusters needed to achieve the best possible performance. In
contrast, for domains of less than 100 nodes the situation is not clear. For example,
for a group of topologies comprising of 20, 40, 70 and 84 nodes, two clusters is the
optimal setting, while for the topology of 60 nodes, four clusters is the optimal and
for a topology of 92 nodes, two clusters are again the optimal clustering scheme.

Takeaway point(s): Hash routing combined with domain partitioning can signifi-
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cantly improve the performance of the network but the used clustering scheme should
be carefully coupled with the unique characteristics of each network topology.

6. Conclusions

The process of resolving requests to in-network caches has concerned the ICN
community so far and has resulted in several proposals to deal with this issue. However,
the tradeoff between performance (in terms of cache hits) and co-ordination overhead
(which raises scalability concerns) is not easy to balance. We believe that hash-routing
techniques offer a very easy to implement, efficient and scalable way of assigning
content items to network caches and redirecting content requests to the corresponding
cache. Our initial results in [10] revealed significant increase in performance, but did
not take into account the case of very large networks, where the stretch of the detour
path can become very big.

In this paper we have extended our previous study to deal with this issue of ex-
tensive detour trips indicated by the hash-routing function. Our proposal builds on
nodal clustering techniques that limit the number of nodes that a request will have to
travel in order to reach the corresponding cache in case of very large networks. We
report significant reduction in delivery delay with a slight decrease in cache hit rate. In
general hash routing combined with domain partitioning can reduce the average item
delivery latency up to 50% depending on the various system parameters (i.e., pop-
ularity pattern, cache size, content popularity fluctuations), as well as on the actual
topological characteristics of the network itself.

The proposed framework requires that ICN architectures adopt hash-routing as
their routing mechanism. On the other hand, and in order to maintain the inher-
ent characteristics of the on path content placement with opportunistic request-to-
cache routing, the approach presented could be also applied to a partially coordinated
caching scheme similar to the one in [63]. In such a scheme, a fraction of each router’s
cache could be used to support the proposed hash-routing framework and the rest of
the cache capacity could be used opportunistically to cache passing-by items. In this
case, an interest packet that heads either towards the router indicated by the hash as-
signment function or towards the content server, searches at each intermediate router
for a matching cached information item. We intend to explore such a hybrid scheme
in our future work in this area.
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