

Understanding Sharded Caching Systems

Lorenzo Saino I.saino@ucl.ac.uk Ioannis Paras i.psaras@ucl.ac.uk

George Pavlov g.pavlou@ucl.ac.uk

Department of Electronic and Electrical Engineering University College London

What is sharding?

Problem and contributions

There is little theoretical understanding of sharding performance under realistic operational conditions.

We model sharded systems and shed light on their properties in terms of:

- Load balancing
- Caching performance

Load balancing

System model

Assumptions and notation

- N items are sharded across K nodes (N > K)
- Each item is requested with probability p_i ($p_1, p_2, ..., p_N$)
- Each shard receives a random fraction L of requests.

Quantify load imbalance

Coefficient of variation of load L of a shard

$$c_v(L) = \frac{\sqrt{\operatorname{Var}(L)}}{\operatorname{E}[L]}$$

General formulation

Load imbalance increases with skewness of item popularity distribution

with # of shards (K)

Impact of item popularity distribution

Let's assume that the demand follows a Zipf distribution with exponent α

$$p_{i} = \frac{i^{-\alpha}}{\sum_{j=1}^{N} j^{-\alpha}} = \frac{i^{-\alpha}}{H_{N}^{(\alpha)}}$$

We can derive a closed-form expression for $c_v(L)$ by approximating $H_N^{(\alpha)}$ with its integral expression evaluated in [I, N+I]

$$\sum_{i=1}^{N} \frac{1}{i^{\alpha}} = H_N^{(\alpha)} \approx \int_1^{N+1} \frac{dx}{x^{\alpha}} = \begin{cases} \frac{(N+1)^{1-\alpha} - 1}{1-\alpha}, & \alpha \neq 1\\ \log(N+1), & \alpha = 1 \end{cases}$$

Impact of item popularity distribution

$$c_{v}(L) \approx \begin{cases} \sqrt{K-1} \frac{\sqrt{(N+1)^{1-2\alpha}-1} \cdot (1-\alpha)}{\sqrt{1-2\alpha} \cdot [(N+1)^{1-\alpha}-1]} & \alpha \neq \left\{\frac{1}{2},1\right\} \\ \frac{\sqrt{(K-1)\log(N+1)}}{2(\sqrt{N+1}-1)} & \alpha = \frac{1}{2} \\ \sqrt{\frac{N(K-1)}{(N+1)\log^{2}(N+1)}} & \alpha = 1 \end{cases}$$

Impact of item popularity distribution

The skewness of item popularity distribution considerably affects load imbalance

Impact of chunking

Let's split each item in M chunks and hash them to shards independently

$$c_{v} (L_{M}) = \frac{c_{v}(L)}{\sqrt{M}}$$
Chunking reduces load imbalance

Impact of chunking

Splitting items in few chunks is sufficient to reap most of the benefits

Impact of heterogeneous item size

Item size: arbitrary random variable with mean μ and variance σ^2

$$c_v\left(L_{(\mu,\sigma)}\right) = \sqrt{K}\sqrt{\left(1 - \frac{1}{K}\right) + \frac{\sigma^2}{\mu^2}}\sqrt{\sum_{i=1}^N p_i^2}$$

Load imbalance proportional to σ/μ

Impact of heterogeneous item size

Would placing a frontend cache in front a sharded system reduce load imbalance?

Load imbalance is convex with respect to C, with a global minimum at C^*

$$\frac{C^* + 1}{N+1} = \gamma = f(\alpha)$$

Observations:

- A frontend cache reduced load imbalance as long as $C < C^*$
- The point of minimum load imbalance does not depend on the absolute value of C but on the ratio between C and N
- The parameter γ is exclusively a function of Zipf exponent α

How small in practice can a frontend cache be to reduce load imbalance?

Any standard frontend cache reduces load imbalance

Caching performance

Problem statement

What is the cache hit ratio yielded by a sharded caching system compared to a single cache as large as the whole system?

Model and assumptions

Assumptions

- Demand satisfies Independent Reference Model (stationary and finite catalog)
- All caches operate under the same policy
- Replacement policy is defined by its characteristic time (e.g. LRU, FIFO, LFU)
 [Che et al., IEEE JSAC], [Martina et al., IEEE INFOCOM'14]

Main findings

Main findings

Web caching example

- The average size of a Web object is 24KB [HTTP archive]
- A caching shard with 24GB of storage we can store 10⁶ items.
- ► The probability of having an error greater than 0.01xC is <1%

Validation

Why this result is important

Summary and conclusions

Load balancing

- Skewed item popularity distribution severely affects load imbalance
- Chunking and frontend caching are effective solutions

Caching performance

- Sharded caching systems yield performance identical to a single cache as long as each caching shard is large enough
- Sharded caching systems can be modeled as a single cache
- Effective technique for building scalable distributed systems