Revisiting Resource Pooling: The Case for In-network Resource Sharing

Lorenzo Saino

Department of Electronic and Electrical Engineering University College London

Joint work with Ioannis Psaras and George Pavlou

Outline

- Background
 - Resource pooling
 - Information Centric Networking
- In-network resource pooling
 - Main concepts
 - High level operation
- Early results
- Summary

• Well known principle in systems design supporting efficient utilization of resources under variable user demands.

- Well known principle in systems design supporting efficient utilization of resources under variable user demands.
- Resource pooling deeply routed in Internet architecture:
 - Packet switching enables pooling of link capacities and routers processing power
 - Buffers enable pooling of link capacity at adjacent time periods
 - MPLS traffic engineering and ECMP enable pooling of multiple paths

- Well known principle in systems design supporting efficient utilization of resources under variable user demands.
- Resource pooling deeply routed in Internet architecture:
 - Packet switching enables pooling of link capacities and routers processing power
 - Buffers enable pooling of link capacity at adjacent time periods
 - MPLS traffic engineering and ECMP enable pooling of multiple paths
- Pooled resources:
 - Router processing power
 - Links
 - Buffers
 - Paths

• Multipath TCP has been recently proposed to efficiently pool end-to-end paths

- Multipath TCP has been recently proposed to efficiently pool end-to-end paths
- Multiple simultaneous connections are opened between two communicating hosts over different paths

- Multipath TCP has been recently proposed to efficiently pool end-to-end paths
- Multiple simultaneous connections are opened between two communicating hosts over different paths
- Load is dynamically shifted among each path based on available bandwidth

- Multipath TCP has been recently proposed to efficiently pool end-to-end paths
- Multiple simultaneous connections are opened between two communicating hosts over different paths
- Load is dynamically shifted among each path based on available bandwidth
- Assumes that at least one host is multihomed

- Multipath TCP has been recently proposed to efficiently pool end-to-end paths
- Multiple simultaneous connections are opened between two communicating hosts over different paths
- Load is dynamically shifted among each path based on available bandwidth
- Assumes that at least one host is multihomed
- More reactive and fine-grained control than MPLS traffic engineering and ECMP

• TCP addresses uncertainty using the packet conservation principle and by (proactively) suppressing demand

- TCP addresses uncertainty using the packet conservation principle and by (proactively) suppressing demand
- TCP is moving traffic as fast as the path's slowest link

- TCP addresses uncertainty using the packet conservation principle and by (proactively) suppressing demand
- TCP is moving traffic as fast as the path's slowest link
- End-points have to speculate on the resources available along the end-to-end path

• ICN paradigm aims at rethinking Internet architecture having in mind content distribution as the main use case

- ICN paradigm aims at rethinking Internet architecture having in mind content distribution as the main use case
- CCN/NDN [CoNEXT'09] is the most prominent architecture

- ICN paradigm aims at rethinking Internet architecture having in mind content distribution as the main use case
- CCN/NDN [CoNEXT'09] is the most prominent architecture
- Main principles:
 - Naming contents instead of hosts
 - Receiver-driven request-response mode of operation
 - Securing content, not channel
 - Ubiquitous packet caches on routers

Transport layer implications of ICN

Transport layer implications of ICN

- Request and Data paths are symmetric
- Instead of the "data-ACK" model of TCP, in ICN we have a "request-data" model

Transport layer implications of ICN

- Request and Data paths are symmetric
- Instead of the "data-ACK" model of TCP, in ICN we have a "request-data" model

- Receivers (instead of senders) regulate the traffic that is pushed in the network
- Based on requests forwarded, each forwarding entity knows how much traffic to expect within one RTT.

In-network caches as resources

- Network caches have been used for *resource optimization* by storing popular contents, possibly for long time
 - Reduce latency, load on origin servers and bandwidth utilization
- Overlay caching:
 - Put caches in "strategic" places and redirect (HTTP) requests to those caches

In-network caches as resources

- Network caches have been used for *resource optimization* by storing popular contents, possibly for long time
 - Reduce latency, load on origin servers and bandwidth utilization
- Overlay caching:
 - Put caches in "strategic" places and redirect (HTTP) requests to those caches
- Packet caching:
 - Individually named and self-identifiable packets/chunks allow for in-network storage!
 - Put caches in every router and serve network-layer requests for named chunks from caches on the path

In-network caches as resources

- Network caches have been used for *resource optimization* by storing popular contents, possibly for long time
 - Reduce latency, load on origin servers and bandwidth utilization
- Overlay caching:
 - Put caches in "strategic" places and redirect (HTTP) requests to those caches
- Packet caching:
 - Individually named and self-identifiable packets/chunks allow for in-network storage!
 - Put caches in every router and serve network-layer requests for named chunks from caches on the path
- We use in-network caching for *temporary storage*

Caches and resource pooling

- The presence of ubiquitous packet caches enables more efficient usage of resources by enabling pooling of sub-paths.
- More effective than buffers

Links

Switching devices

Buffers

Packet switching

Proposed solution

- 1. Push traffic *as far in the path and as fast* as possible
- 2. Once in front of the bottleneck, *store traffic temporarily* in custodian nodes/routers and deal with congestion locally
- 3. Exploit all available (sub-)paths making decisions on a *hop-by-hop manner*.

- Push-data phase Open-loop system
 - Receivers request for as much data as supported by their access link
 - Senders push data as far and as quickly as possible

- Every router monitors rate of incoming *Requests*
- When demand is expected to exceed supply, the local router tries to find alternative paths to detour
- In the meantime traffic in excess (if any) is cached locally
- Backpressure phase Closed-loop system
 - If alternative paths do not exist or are equally congested:
 - Pace requests
 - Send notification upstream to slow down and enter closed-loop transmission

Push-data phase – open-loop system

- Receivers request for as much data as supported by their access link
- Senders push data as far and as quickly as possible

Push-data phase – open-loop system

- Receivers request for as much data as supported by their access link
- Senders push data as far and as quickly as possible

Push-data phase – open-loop system

- Receivers request for as much data as supported by their access link
- Senders push data as far and as quickly as possible

- Every router monitors rate of incoming *Requests*
- When demand is expected to exceed supply, the local router tries to find alternative paths to detour
- In the meantime traffic in excess (if any) is cached locally

- Every router monitors rate of incoming *Requests*
- When demand is expected to exceed supply, the local router tries to find alternative paths to detour
- In the meantime traffic in excess (if any) is cached locally

- Every router monitors rate of incoming *Requests*
- When demand is expected to exceed supply, the local router tries to find alternative paths to detour
- In the meantime traffic in excess (if any) is cached locally

- Every router monitors rate of incoming *Requests*
- When demand is expected to exceed supply, the local router tries to find alternative paths to detour
- In the meantime traffic in excess (if any) is cached locally

Backpressure phase – Closed-loop system

If alternative paths do not exist or are equally congested:

- Pace requests
- Send notification upstream to slow down and enter closed-loop transmission

Backpressure phase – Closed-loop system

If alternative paths do not exist or are equally congested:

- Pace requests
- Send notification upstream to slow down and enter closed-loop transmission

 Recent work [CuckooSwitch, CoNEXT'13], [MICA, NSDI'14], [Caesar, ANCS'14] shows the feasibility of per-packet read/write operations in DRAM at several 10s Gbps on off-the-shelf hardware.

- Recent work [CuckooSwitch, CoNEXT'13], [MICA, NSDI'14], [Caesar, ANCS'14] shows the feasibility of per-packet read/write operations in DRAM at several 10s Gbps on off-the-shelf hardware.
- DRAM cost is steadily decreasing. We'll soon have TBs of DRAM available on commodity servers.

- Recent work [CuckooSwitch, CoNEXT'13], [MICA, NSDI'14], [Caesar, ANCS'14] shows the feasibility of per-packet read/write operations in DRAM at several 10s Gbps on off-the-shelf hardware.
- DRAM cost is steadily decreasing. We'll soon have TBs of DRAM available on commodity servers.
- Ongoing work suggests also Flash-based packet caches could be a viable solution

Availability of detour paths

ISP	1 hop	2 hops	3 + hops	N/A
Exodus (US)	49.77%	35.48%	6.68%	8.06%
VSNL (IN)	25.00%	33.33%	0.00%	41.67%
Level 3	92.22%	6.55%	0.68%	0.55%
Sprint (US)	56.66%	37.08%	1.81%	4.45%
AT&T (US)	34.84%	61.69%	0.72%	2.74%
EBONE (EU)	50.66%	36.22%	6.30%	6.82%
Telstra (AUS)	70.05%	10.42%	1.06%	18.47%
Tiscali (EU)	24.50%	39.85%	10.15%	25.50%
Verio (US)	71.50%	17.09%	1.74%	9.68%
Average	52.80%	30.86%	3.24%	13.10%

Some (very initial) results

Summary and open issues

- Information-Centric Networking:
 - Lots of attention lately
 - Requires investment and effort
 - Worth doing, but need to get the full set of advantages
- There is an opportunity to deal with congestion control at the network layer

Summary and open issues

- Information-Centric Networking:
 - Lots of attention lately
 - Requires investment and effort
 - Worth doing, but need to get the full set of advantages
- There is an opportunity to deal with congestion control at the network layer
- Open Issues:
 - How do you know detour paths are not congested
 - How will this co-exist with traditional TCP flows?
 - Out of order delivery
 - Flows swapping between original and detour paths